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ABSTRACT
For a simple graph G, let P(G;λ) be the chromatic polynomial of G. Two graphs G and
H are said to be chromatically equivalent, denoted G ~ H if P(G;λ) = P(H;λ). A graph
G is said to be chromatically unique, if  H ~ G implies that H   ≅  G. Chia [4] determined
the chromatic equivalence class of the graph consisting of the join of p copies of the
path each of length 3. In this paper, we determined the chromatic equivalence class of
the graph consisting of the join of p copies of the complete tripartite graph K1,2,3.
MSC: 05C15;05C60
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INTRODUCTION
All graphs considered in this paper are finite, undirected, simple and loopless. For a
graph G, we denote by P(G;λ) (or P(G)), the chromatic polynomial of G. Two graphs G
and H are said to be chromatically equivalent, or  χ-equivalent, denoted G ~ H if P(G)
= P(H). It is clear that the relation " ~ " is an equivalence relation on the family of
graphs. We denote by [G] the equivalence class determined by G under " ~ ". A graph G
is said to be chromatically unique, or  χ-unique, if [G] = {G}, i.e., H ~ G implies that

.GH ≅  Many families of χ-unique graphs are known (see [8, 9]), relatively fewer
results concerning the chromatic equivalence class of graphs are known (see [2, 3,
4]). In this paper, our main purpose is to determine the chromatic equivalence class of
the graph consisting of the join of p copies of the complete tripartite graph K1,2,3.

In what follows, we let Kn denote the complete graph on n vertices, ptppK ,...,2,1 the
complete t-partite graph having ni vertices in the i-th partite set, Pn and Cn the path and
cycle on n vertices, respectively and χ(G) the chromatic number of G. Let Wn denote
the wheel of order n and Un the graph obtained from Wn by deleting a spoke of Wn. Also
let n(A,G) denote the number of subgraph A in G and i(A,G) the number of induced
subgraph A in G.
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The join of two graphs G and H, denoted G + H, is the graph obtained from the union
of G and H by joining every vertex of G to every vertex of H.
Let F be a graph and let G = F + F + . . .+ F or pF denote the join of p (≥2) copies of
F. We wish to determine [G]. Let Jp(F) denote the set of all graphs H which are of the
form H = H1 + H2 + . . . + Hp, where Hi∈[F], i = 1, 2, . . . ,p.
In [4], Chia posed the following problem

Problem: What are those graphs F for which Jp(F) = [G]?.

and solve the problem for the case F = P4. In this paper, by making very minor modify-
cation to the technique used in [4], we solve the above problem for the case F = K1,2,3.

PRELIMINARY RESULTS AND NOTATIONS
A spanning subgraph is called a clique cover if its connected components are complete
graphs. Let G be a graph on n vertices. Let sk(G) denote the number of clique cover of G
with k connected components, k = 1, 2, . . . ,n. If the chromatic polynomial of G is

P(G,λ) = ∑ =

n

k kk Gs
1

)λ)((  where (λ)k = λ (λ  1) · · · (λ  k + 1), then the polynomial

σ(G, k) = kn

k k xGs∑ =1
)( is called the  σ-polynomial of G (see Brenti(1992)). It is easy

to see that  σ (G, x) = xn if and only if G = Kn since sk(G) = 0 for k < χ(G) = n. Also
note that sn(G) = 1 and sn”1(G) = m if G has m edges. Clearly, P(G,λ) = P(H,λ) if and
only if  σ(G, x) = σ(H, x) and sk(G) = sk(H) for k = 1, 2, . . . .
If  σ(G, x) = xf(x) for some irreducible polynomial f(x) over the rational number field,
then  σ(G, x) is said to be irreducible.

Lemma 2.1. (Farrell (1980)) Let G and H be two graphs such that G ~ H. Then G and
H have the same number of vertices, edges and triangles. If both G and H has no K4 as
subgraph, then i(C4, G) = i(C4, H). Moreover,

                     ),(3),(2),(),( 553,25 GWiGUiGKiGCi +++−

              ),(3),(2),(),( 553,25 HWiHUiHKiHCi +++−= .

Lemma 2.2. (Brenti (1992)) Let G and H be two disjoint graphs. Then

),(),(),( xHxGxHG σσσ =+ .
In particular,

∏ == t
i xnOxnnnK

it 1 ),(),,...,,( σσ
21

.
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Lemma 2.3. (Liu (1992)) Let G be a connected graph with n vertices and m edges.
Assume that G is not the complete graph K3. Then

                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≤− 2

1
)(2

m
Gsn

and equality holds if and only if G is the path Pm+1.

A CHROMATIC EQUIVALENCE CLASS
We first have the following lemma which follows readily from Lemma 2.1.

Lemma 3.1. [K1,2,3] = {K1,2,3, K2,2,2  e} where e is an edge of .2,2,2K .

We now have our main theorem as follow.

Theorem 3.1. Let G = K1,2,3 + K1,2,3 + … + K1,2,3 be the join of p copies of K1,2,3. Then

[ ] ).( 3,2,1KJG p=

Proof. Let H ~ G, we will show that ).( 3,2,1KJH p∈  Since P(G) = P(H) implies that

),()( HG σσ =  it is more convenient to look at  σ(G) and σ(H). First note that

)()3()( 2,2
23

3,1 eKxxxxK −=++= σσ with [K1,3] = {K1,3, K2,2   e}, and

).()3)(()( 2,2,2
232

3,2,1 eKPxxxxxxK −=+++=σ  So,  σ(G) = [x(x2 + x)(x3 +

3x2 + x)]p = [(x2 +x)(x4 + 3x3 + x2)]p, having p irreducible factors of x, x2 + x and x3 + 3x2

+ x respectively.
Let n and m denote the number of vertices and edges in H respectively. Then n = 6p

and m = 36 ( )2
p  +11p = 18p2 - 7p so that σ(H) =  σ(G) = ip

i i xGs∑=

6

1
)(   . Moreover, H

is uniquely 3p-colorable as G is so.

Let pVVV 321 ,...,, be the color classes of the unique 3p-coloring of H. Let Vij denote the

subgraph induced by .,1 jiVV j ≠∪  Call Vij a 2-color subgraph of H.

Case (i): Every Vi has exactly two vertices.
In this case, Vij is either a path P4 or else a cycle C4 because, by Theorem 12.16 of [6], Vij
is connected for  i ≠ j.  Note that the number of 2-color subgraphs in H is

( ) pppp +−= )59( 2
2
1

2
3  . By looking at the number of edges in H, we see that exactly p
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of the 2-color subgraphs Vij are 4P  and the rest of the 2-color subgraphs are 4C . This

means that H  has only P4 and K2 as subgraph so that 24 KrPsH += (s,r ≥ 0).
Consequently,

)()]3)(([])()3[()( 2322234 GxxxxxxxxxxxH prs σσ =+++=+++= .
Obviously, s, r ≥ 1 so that σ (H) = (x4 + 3x3 + x2)(x2 + x)σ(H1) and that by Lemma 3.1,
H = (K2,2,2 − e) + H1 for some graph H1. Since  σ(H1) = [x(x2 + x)(x3 + 3x2 + x)]p-1, by
induction on p, we have H1 ∈ Jp-1(K1,2,3). This implies that H ∈ Jp(K1,2,3).

Case (ii): Not every iV  has exactly two vertices.
Then there is a j such that |Vj| = 1. Without loss of generality, let |Vj| = i for j = 1, …,
r, r  ≥1. Then H = Kr + H*  for some graph H*. Let F1, F2, …, Ft be the connected

components of *H  . Then H = Kr + 1F  +…+ tF  with *H = 1F  +…+ tF  .

If for some i, Fi = K3, then H  contains a subgraph K1 ∪ K3. This means that H = K1,3 +
H' for some graph H' and so
        σ(H) = (x4 + 3x3 + x2)σ(H' )=[x(x2 + x)(x3 + 3x2 + x)]p =σ (G).

Clearly, σ(H' ) must contain a factor (x2 + x) so that

)()()3()( 1
''234 HHxxxH σσσ ++=  (where ))( 2'' xxH +=σ  for some graph

H1. Obviously, "H =K2. Hence, H=K1,2,3+H1 with
1232

1 )]3)(([)( −+++= pxxxxxxHσ . Again, by induction on p, we have
H∈Jp(K1,2,3).

If for some i, Fi = K2, then H = K2 + H'. By the similar argument as above,  σ(H' ) must
contain a factor (x3 + 3x2 + x) so that H = K1,2,3 + H1 or (K2,2,2 − e) + H1 with  σ(H1) =
[x(x2 + x)(x3 + 3x2 + x)]p-1. Again, by induction on p, we have H∈Jp(K1,2,3).

If for some i, Fi = P4 (=K2,2− e), then H = P4 + H'. By the similar argument as above,
σ(H') must contain a factor (x2+x) so that H = (K2,2,2 − e) + H1 with  σ (H1) = [x(x2 +
x)(x3 + 3x2 + x)]p-1. Again, by induction on p, we have H∈Jp(K1,2,3).

So, assume that Fi is not K2, K3 or P4 for any i = 1, …, t. Let ni and mi denote the number

of vertices and edges in Fi respectively. Then  1

t
ii

m
=∑ = 4p, the number of edges in

H .

If ni ≤ 3, then Fi = P3. However, this is impossible because  σ(G) does not contain
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(x3 + 2x2) as a factor. Hence, ni ≥ 4. This implies that 6p = |V(G)| = r +
1

t
ii

n
=∑  ≥ r + 4t

so that t < 3p/2 because r ≥1.

Since H = Kr + H*, we have σ(H) = xr . )( *Hσ  It follows that 
*2 2 *( ) ( )n ns H s H− −=

where n*   is the number of vertices in H* . Note that

                       )(
*

1 1
σ)*()*(σ iF

n

j

t

i

jxHjsH ∑
=

∏
=

==

where

          ...,)()()(σ 2
2

1

1

1 +++== −
−

−

=
∑ i

i

i
i

n
in

n
i

n
n

k

k
iki xFsxmxxFsF

i = 1, …, t.

By multiplying all the terms in ( )1
t Fi iσ∏ =   and by equating the coefficient of * 2nx −  , we

have by Lemma 2.3,

   )()(
1 21*2* i

t

i ntji jin FsmmHs
i∑∑ = −≤≤≤− +=

ρ

            ∑∑ =≤≤ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+≤

t

i
i

ji ji

m
mm

11 2
1

.

Consequently,
2

)23(2
)( 1 1

2

*2*

∑ ∑≤≤≤ =
−

+−+
≤ tji

t

i iiji
n

mmmm
Hs

               ( )2

1 1
3 2

2

t t
i ii i

m m t
= =

− +
=
∑ ∑

   
216 12 2

2
p p t− +

=

                           
2

916 2 pp −
<

because t < 3p/2. However, this is a contradiction because ( )2 6 2( )n ps H s G =− −=

).(2/)816(
2

164 *2
2

*
Hspp

p
p n −>−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ This completes the proof.

Remark: Note that for even p, our main result is a special case of Theorem 5.1 in (Ho,
(2004)).
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