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ABSTRACT

For a simple graph G, let P(G;\) be the chromatic polynomial of G. Two graphs G and
H are said to be chromatically equivalent, denoted G ~ H if P(G;A) = P(H;A). A graph

G is said to be chromatically unique, if H~ G implies thatH = G. Chia[4] determined
the chromatic equivalence class of the graph consisting of the join of p copies of the
path each of length 3. In this paper, we determined the chromatic equivalence class of
the graph consisting of the join of p copies of the complete tripartite graph K, ..
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INTRODUCTION

All graphs considered in this paper are finite, undirected, simple and loopless. For a
graph G, we denote by P(G;\) (or P(G)), the chromatic polynomial of G. Two graphs G
and H are said to be chromatically equivalent, or y-equivalent, denoted G ~ H if P(G)
= P(H). It is clear that the relation " ~ " is an equivalence relation on the family of
graphs. We denote by [G] the equivalence class determined by G under " ~". A graph G
is said to be chromatically unique, or y-unique, if [G] = {G}, i.e., H ~ G implies that
H =~ G. Many families of y-unique graphs are known (see [8, 9]), relatively fewer
results concerning the chromatic equivalence class of graphs are known (see [2, 3,
41). In this paper, our main purpose is to determine the chromatic equivalence class of
the graph consisting of the join of p copies of the complete tripartite graph K , ..

In what follows, we let K denote the complete graph on n vertices, KpLp2

complete t-partite graph having n, vertices in the i-th partite set, P, and C_ the path and
cycle on n vertices, respectively and y(G) the chromatic number of G. Let W_ denote
the wheel of order nand U, the graph obtained from W by deleting a spoke of W . Also
let n(A,G) denote the number of subgraph A in G and i(A,G) the number of induced
subgraph A in G.
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The join of two graphs G and H, denoted G + H, is the graph obtained from the union
of G and H by joining every vertex of G to every vertex of H.

Let Fbeagraphandlet G=F + F + .. .+ F or pF denote the join of p (=2) copies of
F. We wish to determine [G]. Let J p(F) denote the set of all graphs H which are of the
formH=H +H,+... + Hp,where HelFl.i=1,2,....p.

In [4], Chia posed the following problem

Problem: What are those graphs F for which J(F)=[G]?.

and solve the problem for the case F = P,. In this paper, by making very minor modify-
cation to the technique used in [4], we solve the above problem for the case F =K, ..

PRELIMINARY RESULTS AND NOTATIONS

A spanning subgraph is called a clique cover if its connected components are complete
graphs. Let G be a graph on n vertices. Let s (G) denote the number of clique cover of G
with k connected components, k = 1, 2, . . . ,n. If the chromatic polynomial of G is

P(G,A) = 22:1 S, (6)(7»)k where (L), =A (Ass 1) - - - (A s K + 1), then the polynomial

n ~\ok - . . .
o(G, k) = Zk:l S, (G)x" is called the o-polynomial of G (see Brenti(1992)). It is easy

to see that o (G, X) = x"if and only if G = K_ since 5(G) = 0 for k < (G) = n. Also
note that s (G) = 1 and s .,(G) = m if G has m edges. Clearly, P(G,A) = P(H,}) if and
only if o(G, X) = o(H, x) and s(G) =s(H) fork=1,2,....

If o(G, x) = xf(x) for some irreducible polynomial f(x) over the rational number field,
then o(G, X) is said to be irreducible.

Lemma 2.1. (Farrell (1980)) Let G and H be two graphs such that G ~ H. Then G and
H have the same number of vertices, edges and triangles. If both G and H has no K, as
subgraph, then i(C,, G) = i(C,, H). Moreover,

~i(C,,G) +i(K,.,G) +2i(U;,G) +3i(W,,G)
= —i(Cy, H)+i(K, 5, H) + 2i(U,, H) +3i(W,, H).

Lemma 2.2. (Brenti (1992)) Let G and H be two disjoint graphs. Then

o(G+H,x)=0(G,x)o(H,x).
In particular,

O (K ,x)=ﬂ}=16(onl,x)_
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Lemma 2.3. (Liu (1992)) Let G be a connected graph with n vertices and m edges.
Assume that G is not the complete graph K,. Then

sn_2<G)s(m"lj
2

and equality holds if and only if G is the path P__ .

A CHROMATIC EQUIVALENCE CLASS

We first have the following lemma which follows readily from Lemma 2.1.
Lemma3.1. [K, 1= {K ,.,K,,, ws e} where e is an edge of K, , , .

We now have our main theorem as follow.

Theorem 3.1. Let G = Kl’z’3 + K
[G]: J p(K1,2,3)'

+... + K|, be the join of p copies of K , .. Then

1.2.3

Proof. Let H ~ G, we will show that H € J /(K| , ;). Since P(G) = P(H) implies that
o(G)=o0(H), it is more convenient to look at ©(G) and o(H). First note that
o (K ;) =x(x*+3x* +x) = o (K, , —e) with [K ] = {K |, K,

13 was e}, and

,2
(K ,5)=X(X* +X)(x* +3x* + X) = P(K,,, —€). So, o(G) = [X( + X)(X* +

3x2+X)]P = [(x =X)(X* + 3% + x?)]P, having p irreducible factors of X, x> + x and X* + 3x*
+ X respectively.
Let n and m denote the number of vertices and edges in H respectively. Then n = 6p

and m = 36(;’ ) +11p = 18p? - 7p so that 6(H) = o(G) = 26': 5.(G)x' . Moreover, H
is uniquely 3p-colorable as G is so.

Let V|,V,,...,V, p be the color classes of the unique 3p-coloring of H. Let V; denote the

subgraph induced by V, UV i 0 # ], Call V;; a 2-color subgraph of H.

Case (i): Every V, has exactly two vertices.
In this case, V; is either a path P, or else a cycle C, because, by Theorem 12.16 of [6], Vi
is connected for i # j. Note that the number of 2-color subgraphs in H is

(32 ): %(9 p’-5p)+p . By looking at the number of edges in H, we see that exactly p
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of the 2-color subgraphs V; are P, and the rest of the 2-color subgraphs are C,. This

means that H has only P, and K, as subgraph so that H =sP, +rK, (s, = 0).
Consequently,

o(H)=[(x* +3x> +x*)* (x> + X)" 1= [X(X* + X)(X’ +3x* + X)]’ = 5(G) -
Obviously, s, r > 1 so that 6 (H) = (x* + 3x* + x*)(x* + X)6(H,) and that by Lemma 3.1,
H=(K,,, —e) + H, for some graph H,. Since o(H,) = [X(x* + X)(x* + 3x* + X)], by

induction on p, we have H, € Jp (K 5)- This implies that H € J(K

1.2.3 1,2,3) .

Case (ii): Not every V; has exactly two vertices.

Then there is a j such that V| = 1. Without loss of generality, let [V, = iforj=1,...,
r,r 21. Then H=K_ + H, for some graph H,. Let F, F,, ..., F be the connected

components of H, . Then H=K + F, +..+F with H.= F +..+F .

If for some i, F, = K,, then H contains a subgraph K, UK,. This means that H =K , +
H' for some graph H' and so
o(H) = (x* + 3x* + x)o(H" )=[x(x* + x)(x* + 3x* + X)]* =6 (G).

Clearly, o(H' ) must contain a factor (x> + Xx) so that
o(H)=(x*+3x"+x*)o(H")o(H,) (where o(H")=x*+X) for some graph
H.. Obviously, H"=K,. Hence, H=K , +H, with
o(H,) =[X(x* +X)(X* +3x* +x)]""' . Again, by induction on p, we have
He Jp(K1,2,3)'

If for some i, F,= K, then H =K, + H'. By the similar argument as above, 6(H'") must
contain a factor (X’ +3x* + x) so that H =K, ,; + H, or (K,,, —€) + H with o(H)) =
[X(x* + X)(x* + 3x* + X)]"!. Again, by induction on p, we have He J o(KLy)-

If for some |, F.=P, (:K2,z_ e), then H =P, + H'. By the similar argument as above,
o(H") must contain a factor (X*+x) so that H = (K,,, — ) + H, with & (H) = [x(x* +

X)(X* + 3x* + X)]"!. Again, by induction on p, we have He J (KoL)

So, assume that F,isnot K, K, or P, forany i=1, ..., t. Let n, and m, denote the number
of vertices and edges in F, respectively. Then Z:zl m; = 4p, the number of edges in
H.

If n.< 3, then F, = P.. However, this is impossible because G(G) does not contain
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(X* +2x) as a factor. Hence, n, > 4. This implies that 6p = [V(G)| =r +Z::1 n >r+4t
so that t < 3p/2 because r >1.
Since H=K_+ H., we have 6(H) =x". o (H.) It follows that s, ,(H)=s, ,(H.)
where n, is the number of vertices in H, . Note that

Ny

st
o(Hx) = X s (Hox)=TTo(F)

) . 1

J=1 i=1
where

o(F,) = Z S(FOX  =x"+mx" " +s (F)X" 2 +..,,
k=1

i=1 ..t
By multiplying all the terms in ITj_;o(F) and by equating the coefficient of x™~2 , we
have by Lemma 2.3,

P
Sn*—Z(H*) = leigjgtmimi +Z::lsni_2(Fi)
m, —1
Sleisjmimj-'_Z:l[ 2 j

t 2
leisjgtzmimj+zi:1(mi _3mi+2)
2

(ZLI m; )2 - 32:21 m, + 2t

- 2

Consequently, s, ,(H.)<

_l6p*-12p+2t
2

2
<16p -9p
2

because t < 3p/2. However, this is a contradiction because S, _,(H) =S p_z(é) -

4p+ 16(5] = (16 p>-8p)/2>s, _,(H.). This completes the proof.

Remark: Note that for even p, our main result is a special case of Theorem 5.1 in (Ho,
(2004)).
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