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Solid Conductor in a Magnetic Field That Moves at a Uniform Velocity along a Channel
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Abstract

A two dimensional magnetic field is suddenly moved
at a unifonn velocity along a channel of infinite length
containing an electrically conducting solid metal with
magnetic penneability and magnetic diffusitivity nnder
the assumption of finite Reynolds number. An analytical
solution is obtained for the case ofone Fourier-component
magnetic field. The numerical scheme is developed
with the implementation of the boundary conditions.
It is shown that in the steady state the numerical and
the analytical results agree well for magnetic Reynolds
number in the range of! to 1200. It is found that as magnetic
Reynolds number increases the solid metal behaves more
and more like a perfect conductor where the field lines are
frozen in the moving solid metaL Pictures of evolution of
field-lines with time are plotted for various times.

Introduction

The phenomenon of 'flux expulsion' in
magnetohydrodynamicsoccursathighmagneticReynolds
number whenever a flow with streamlines acts upon a mag
netic field transverse to the flow. The purely kinematics
aspects have been widely studied by Zel'dovich (1957),
E. N. Parker (1963), R L. Parker (1966) and Weiss
(1966). It is also known (Galloway, Proctor & Weiss
1978; Proctor & Galloway 1979) that flux expulsion can
persist even in situations where the magnetic field has a
strong dynamic influence. H. A. Karnkar & H. K. Moffatt
(1981) considered pressure-dtiven flow along a channel
in the presence of an applied magnetic field which is
periodic in the stream-wise direction and showed that
flux expulsion due to reconnection of field lines occurs
when the pressure gradient is sufficiently large which
finally leads to a runaway effect.

In the flow where it is assumed that the magnetic Reynolds
number, R is small the fluid velocity, U, does not affect
the applied" magnetic field. But in this study we want to
consider the effects of finite, Rm on the fluid flow as well
as the imposed magnetic field.

For simplicity we first consider a solid metal which at
time t = 0 is moved at a constant velocity Ux. Because
this problem can be solved analytically itprovides a useful
check on the numerical scheme we use later to investigate
flow whereR

m
is finite.

In section 2 we formulate the solid conductor problem
and derive the dimensionless governing equation. We
investigate the analytical solution of this problem in
section 3. In section 4 we derive the numerical scheme
used and the implementation of the boundary conditions.
The following section 5 gives numerical results and lastly
the conclusions are summarised in section 6.

Solid Conductor Problem

Consider a channel - a :S z :S a of infinite length and
width containing a solid metal of magnetic penneability
1', electrical conductivity a, and magnetic diffusivity 11,
where 11 ~ lI(crl"), being subjected to an applied two
dimensional periodic magnetostatic field B which travels
parallel to the channel with a unifonn velocity -Ux. The
magnetic boundary conditions are

(&) N&: = Eo I: bn cos[nk(x + Ut)J. (I)
z=±a n=I

We make the assumption that the edge effects of the
side walls y = ± a, where b > a, may be neglected.
Nowthis problem is equivalentto the situation where the
applied magnetic field is stationary but at t ~ 0, the
solid metal in the channel is suddenly moved at the
velocity Ux.
Together with the irrotational and divergence conditions,
VIZ.

V"xB' = 0, V'.B ' = °
the governing induction equation is

ElB'
Elt' = v' x (v' x B') + r)V'2B.

By putting B' = -v''I/J' x fJ = -v' x ('I/J'fJ) in the
induction equation, where 1jJ' is the magnetic stream
function, we obtain
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Elt' fJ + v' x B' - 'IV' x B' = V'If!' (3)

where 'P is some scalar field and 11 is constant in space
and time (which is likely for liquid metal). Taking

the y - component of (3) we get a simpler governing
equation

EI !'
~ + v'· V'1jJ'
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