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Conjecture on Minimum Covariance

Abstract

We review Rousseeuw and van Driessen’s basic
theorem of Fast MCD algorithm. Later on, we present
a conjecture that if minimum covariance determinant
in Fast MCD 1s replaced by minimum vector variance
(MVV), then the results are not changed. The importance
of this conjecture lies in the computational efficiency of
the algorithm where a multilinear form is replaced by a
quadratic form.

Introduction

On December 2005, in his public lecture at the University
Malaya, Kuala Lumpur, Calyampudhi R. Rao pointed
out that “The current statistical methodology based on
probabilistic models applied on small data sets appears
to be inadequate to meet the needs of the society in terms
of quick processing of data and making the information
available for practical purposes.” This statement reflects
a very fundamental problem in modern society, namely,
quick data processing. [t is in the spirit to respond to
this problem in multivariate scheme that this paper is
presented.

The most important step in multivariate analysis is to
produce highly robust estimates of location and scatter.
A well accepted and widely used methodology that
has received considerable attention in literature is the
so-called fast minimun covariance determinant (Fast
MCD) introduced by Rousseeuw and van Driessen [1].
It is affine-equivariant and has high breakdown point
and bounded influence function. The original version of
Fast MCD appeared more than two decades ago when
Rousseeuw in 1985 [2] introduced the methodology
called minimum covariance determinant {MCD). In-
depth discussions on MCD can be found, for example,
in [11, I31, [4], [51, [€], [7], [8] and [9]. However, the
computational efficiency of MCD was unsatisfactory. [t
needs fourteen years before Rousseeuw and van Driessen
[1] introduce Fast MCD; a fast version of MCD.

Fast MCD becomes more and more popular after the
work of Hubert ef a/. in [9] who improve its performance
in order to give a closer solution to the minimum global,
and Hubert et af. in [10] who comprehensively show its
role in robust multivariate methods, However, it is not
without limitation. Its computational efficiency is very
challenging for improvement. The use of Mahalanobis
distance and covariance determinant in Fast MCD
are not apt when the data sets are of high dimension
because it becomes computationally inefficient. On the
other hand, computational efficiency is as important as
effectiveness (see [11]).

This paper presents a conjecture that if the objective
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function in Fast MCD algorithm is substituted by
minimum vecior variance, then the MCD location
and scatter are not changed. This conjecture is
justified by numerous simulation experiments and is
developed based on the fact that vector variance can
also be used as a measure of multivariate dispersion
(see [12]). Furthermore, the used of minimum vector
variance to replace minimum covariance determinani
as the objective function in Fast MCD algorithm is
advantageous (see [13]).

The rest of the paper is organized as follows. In Section
2, Rousseeuw and van Driessen’s basic theorem of
Fast MCD algorithm will be reviewed and discussed.
Later on, in Section 3, we recall vector variance as a
complementary measure of dispersion to covariance
determinant. The use of both measures will provide
more information about the covariance structure than
if we use a single measure. Section 4 presents the
conjecture that the MCD location and scatter will not
change if minimum covariance determinant in Fast MCD
algorithm is substituted by minimum vector variance.

Rousseeuw and van Driessen’s Theorem

‘We begin with the following theorem, which is the basic
theorem mentioned about Fast MCD, introduced by
Rousseeuw and van Driessen. See Theorem 1 in [171.

Theorem I. LetX;, X,, ..., X, he aset of i.id
random vectors of p dimension where the second
moment exist. Let Hy be asubsetof X ={X,;, X5, ..
.. X, } of h elements,
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S, are mean vector and covariance matrix associated
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to H 4, respectively, then, |Sz| < |S1| with equality if’
and only if)?HI = ‘)?Hz and S, = 8.
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This theorem states that, if , is more concentrated than

H; ,thenthecovariance matrix S ofall vectorsbelonging
to H , has a lower determinant than that of the covariance
matrix S; of all vectors in H;. This is the necessary

condition for H, to be more concentrated than f1; used
by Rousseeuw and van Driessen in [1] in constructing
their algorithm. There are three other important results
given by Rousseeuw and van Driessen that we want to
discuss. First, if the procedure in that theorem is repeated
severa) times, the results are convergent. More precisely,

there exist an integer 7 such that |S,,| =|S,, |, i.e. Hy,

is as concentrated as H,,_;. The second important result is

a consequence of the first. Let Ay 2 A 2 ... 2 A
> 0 be the ordered eigenvalues of §p ; k=1, 2. 1f H; is

more concentrated than A, then Az; Az ... Az, < Ay

Ayz ... A4 - 1t is this implication that will be discussed in
the rest of the paper.

Third, the MCD subset H of X is separated from X\/7 by
an ellipsoid. This result is very important in the context

of the present paper because it implies that, if H is
more concentrated than H;, the smallest ellipsoid that
covers /1, has smaller volume than that of the smallest

ellipsoid that covers H;. There exists then an affine
transformation such that the transformed former ellipsoid
is contained entirely in the latter. This viewpeint will
lead us to another notion of “more concentrated data
subset” which will be defined in the next section.

Proposed Measure of Data Concentration
Let H, and H, be the two subsets of X defined in
Theorem 1. Thus, H, is more concentrated than H;

. As the smallest ellipsoid that covers H, has smaller
volume than that of the smallest ellipsoid that covers

H,, after an appropriate affine transformation, the
transformed former ellipsoid is contained entirely in
the transformed latter ellipsoid. Hence, due to the fact
that covariance matrix is affine-equivariant, the above
notion of “more concentrated data subset” has the

following imptlication. If H, is more concentrated than

H,;,then Ay < Ay foralli=1,2,.. p. See [2], [3]
and [7] for further discussion on the property that MCD
scatter is affine-equivariant. Consequently, because the
covariance structure is involved and ail eigenvalues
are assumed to be positive, by using the notion of vec
operator, see [14] and [ 15]. we get the following theorem.

Theorem 2. Let us denote vec(A) the vector obtained
from a matrix A by stacking its columns one underneath
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the other. If H, and H; are the two subsets of X
defined in Theorem I, then "vec(Sz)Hz <||vec(s; )"2

This theorem is straight forward. Let S be a covariance
matrix of size (pxp). Then, the squared Frobenious

norm “vec(S)”2 of § is equal to the trace of S°.

Consequently, if Ay; < Ay; foralli=1,2,..., p, then

P P
%ii < Zjﬂ.i . Hence, Ilvec(Sz)Hz <”vec(S1)H2.
= =
Theorem 2 gives us another necessary condition for

H, to be more concentrated than #;. If H; is more

concentrated than H; in the sense of Theorem 1,
then Hvec(SZ)nz <|vee(S; )"2 In statistical literature,

”vec(S)H2 is called vector variance (see [16]). More

information on the role of the squared Frobenious
norm of S in statistics, can be found in [12] for the
distributional properties of vector variance, [13] for
its tole in robust estimation of location and scatter,
[16] for the original ideas of vector covariance and
vector variance, [17] for the distributional properties
of vector covariance, and [18] for its application
in multivariate  process variability —monitoring.

In the next section we present a conjeciure on MCD
location and scatter if we use minimum vector variance
as the objective function in Fast MCD algorithm.

Conjecture

According to Theorem 2, like covariance determinant,
vector variance can also be used as multivariate
dispersion measure. Both are complementary to each
other. The use of them simultaneously will provide
more information than if we use a single measure. More
over, if instead of minimum covariance determinant
we use minimum veetor variance as the objective
function in Fast MCD algorithm, the formulation of
Rousseeuw and van Driessen’s theorem mentioned
in the Section 2 is slightly modified as follows.

Theorem3.Let X;, X5,..., X, beasetofiid. random
vectors of p dimensionwhere the secondmoment exist. Let

H,; beasubsetofX={X;, X;,..., X, } of helements,
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where O is a permutation on the index set, such that

2

o

dgy £ .. S domy- If Xp, and S are

mean vector and covariance matrix associated to H
, respectively, then, nvec(SZ)"2 < Hvec(S‘,)“2 with
equality if and only if X'Hf = )?Hz and S, = §;.

Numerous simulation experiments with several
values of sample size n and dimension p show that:

1. I the oprocedure in this theorem is
repeated, then there exist an integer m
such  that "vec (Sy )"2 Hvec(Sm_j )Hz;

2. The MCD location and scatter are not changed.

In these experiments we use p = 2, 5, 10, 20, 30; 40,
50, and 100, » = 10p with the number of replications
equal 100. Thus, there are 800 simulation experiments
and their results lead us to the following conjecture.

Conjecture. Let the procedures in Theorem 1
and Theorem 3 be repeated such that they reach

fheir convergence. Let also, {(Tyep.Cucp) and

(Tagy - Cagpy } be the pairs of location and scatter issued
from Theorem 1 and Theorem 3, respectively. Then,

(TnenCaten ) = (Tagw s Comw ) -
Additional Remarks
Robust Malahanobis distance issued from the

algorithm based on Theorem 1 and that issued from
the algorithm based on Theorem 3 are equal. More
over, the use of Theorem 3 is computationally more
efficient than Theorem 1. The former only needs a
quadratic form while the latter a multilinear form.
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