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Abstract

A C,; index is the most widely used measure of
process capability. A befter understanding and
interpretation of C, is by constructing its
confidence interval. The construction of such
intervals, are normally based on the assumption
that the measurements process can be treated as
samples from a normal  distribution.
Nevertheless, many processes are not normal and
have a heavy tail distribution, which probably
due to the presence of outliers in the data. An
alternative approach is to use a bootstrap
confidence interval estimate of C,, index which
is based on robust method. The advantage of
this estimate is that its usage does not depend on
any distribution. A mumerical example is
presented to evaluate the performance of the
bootstrap confidence interval of the robust Cy
index. The result indicates that the bootstrap
confidence interval estimate based on the robust
C,¢ is better than the classical C,, index.

Introduction

The fundamental tasks of process capability
indices are to determine whether a
manufacturing production process is capable of
producing items within specification limit (see
Grant & Leavenworth, 1988; Koronacki, 1993;
Montgomery, 1997; Thompson, 1993). Process
capability indices are used widely throughout
industries, to give a relatively quick indication of
process capability in a format that is easy to
compute and understand. The most widely used
process capability indices are the Cp; index. The
C, index is developed to indicate how process
conforms to two sided specification limits and it
1s used to measure the actual capability of a
process.

Suppose, the lower (LSL) and the upper
specification limits (USL) has been set by the
manufacturer, then the C,; is defined as

Cpk:min USL— gt 1~ LSL (1)
3o ! 37

Usually, the value of the process mean, n and
process standard deviation, o, is unknown and
must be estimated using the sample mean, X
and the sample standard deviation, s from a
stable process. Then the estimated C,; index are
written as

Cpk:min [USL—Y ’ T—LSL {2)
38 38

The drawback of using X and s as an estimator is
that it is very sensitive fo outliers. Indeed, one
single outlier can have an arbitrarily large effect
on the estimate. As an alternative, a robust
location and scale estimates which are less
affected by outliers are proposed to replace X
and s in (2).

Once the Cp index is estimated, the production
engineer will compare this value with the
recommended minimum value and will consider
the process to be capable if the estimated value is
larger than or equal to the minimum value. A
manufacturing engineer recommended a value of
Cp: equals to 1.33 is the minimum value that
should be observed for the acceptable process
capability. It is very important to point out that
such practice ignores the fact that C, index is a
random variable because it is calculated from
different samples of the same size taken
independently from the same stable distribution.
Unfortunately, convenient mathematical
formulas for estimating sampling variability of
C,r have not been developed for the widely
differing distributions that are encountered in
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industrial applications. Fortunately, Chou, Owen
and Borego (1990) have provided correct
understanding and interpretation of the C,, index
by constructing its confidence limits estimates.
Nevertheless, the calculation of such intervals
has been based on the characteristics that the
process having a nommal distribution.  In
practice, many processes are not normal, perhaps
due to the presence of outliers in the data set.
Inferences based on assumed normal process can
be very misleading especially when the
underlying distribution is not normal. In order to
obviate from this problem, a confidence interval
estimation technique for C,; which is free from
any normality assumptions of the process is
utilized. Such  technique is called a
bootstrapping method which was first introduced
by Efron (1979).

In this paper we want to investigate the
performance of the bootstrap confidence
intervals of the C, index based on M-estimator
in terms of their coverage probability. We
proposed to replace the value of X and s in (2)
with more robust estimates such as M estimator
as proposed by Huber (1973). A ‘good’
confidence interval is one which possesses a
reasonably accurate coverage probability and
‘good’ equitailness. Equitailness means that a
confidence interval for # of level {1-2 & ) is such
that the percentage for @ to lie outside the
interval is divided equally between the lower and
upper limits of the intervals.

Robust C,; Index based on M-estimators

One reason for the need of robust statistical
procedures is the existence of outliers in the data
set. Outhiers are data which are far from the bulk
of the data. They can be due to genuinely long-
tailed distribution or gross errors. Examples for
gross errors may be copying or punching errors,
wrong decimal point, wrong scales of
measurements taken over a period of time, and
others. This means that even when data is
sampled from a normaily distributed population,
existence of outliers in sample data set may
cause an incorrect capability index value,

In general, two parameters are involved in
calculating the process capability index, The
two parameters are p and 6. is usually
estimated by sample mean (X ) and o is usually
estimated by sample standard deviation(s).
When the distribution of the sampled population
deviates greatly from normality, such estimators
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may not have the desirable properties like
unbiasedness and minimum variance. As an
alternative, we may turn to robust estimator, for
example, the M-estimator,

In calculating C, index, we want reliable
estimators but would like to avoid using strong
assumption about the behavior of the estimators.
M-estimators can be applied to a location model.
It compares favorably with the sample mean
when the sampled population is normally
distributed, and is considerably better than the
sample mean when the underlying distribution
for sampled population is heavy-tailed. Tnstead

of looking at estimator 6 = T, (x), x40y Xa)

which  minimize the objective function
"

Z(xj ~@) for sample mean, a scale equivariant
i=l

M estimates of location is obtain such that :

4 =arg min 2 p(x" mﬂ).
é
H
Since o does not depend on g, £ is a solution

of X \p(x" e }— 0 where  is the derivative
loy

of p with respectto u.

In this paper, the Huber M-estimator will be used
with ¢ as the tuning constant (¢>8). For Huber
M-estimator (see Huber, 1981), the p , function

15 defined as

¥2
— ;|x!£c
2

o 8)=

2

-3¢ llee

thus, the derivative of this p function is

x ; |x|£c

v &o= csgn(x) |x|>c

This Huber p and w function will down-
weights outliers.

Instead of using sample standard deviation s to
estimate Cp in (2), we proposed using the
median absolute deviation (MAD) as suggested
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by Andrew et al. (1972}). The median absolute
deviation is a robust estimate of scale where

MAD = medianixi - median(x)|

To make the MAD comparable to the standard
deviation, we usually consider the normalized
MAD defined as MADN=MAID(x)/0.6743

Bootstrap Method

The bootstrap method was introduced by Efron
in 1979. It can be utilized to calculate
confidence  interval  without relying on
assumption (such as npormality) for the
underlying population distribution.  Bootstrap
method is a computer intensive method that can
replaced theoretical assumptions and analysis
with considerable amount of computation. This
means it can compute the estimated standard
error (&}, biases, confidence intervals, etc., in
an unfamiliar way; purely by computational
means, rather than through the use of
mathematical formulas.

In this paper, bootstrap method will be adopted
to estimate the confidence intervals for process
capability index. In order to obtain the
confidence interval for C, the standard errors of
the estimates are required. In practice, the
estimated standard error &, are usually
employed to form approximate confidence
intervals for Cp  The usual (1-20) 100%

confidence interval for Cp 18, Cpp 26 Z, 0

where Z,,, is the 100 (a/2) percentile point of a
standard normal distribution. The validity of this
interval depends on the assumption that C'pk is

normally distributed. Otherwise, the approximate
confidence interval will not be very accurate.
Bootstrap confidence intervals do not rely upon
the usual assumption of normality; it can give the
standard error of the estimates automatically via
a Monte Carlo algorithm. This algorithm makes
use of re-sampling schemes where bootstrap
samples are obtained. Bootstrap samples are
repeated samples of the same size as the
observed sample taken with replacement from
the observed sample. Procedure to obtain the
Bootstrap standard error is as follows:

1) Let a sample of size » is taken from a
process that has distribution F,

X Xy, X, ~F

2} A bootstrap sample is drawn from the above
sample data set.
X, Xpan 5y~ F
Estimate the process performance index
for this bootstrap sample

)

o * * *
Cop = Co (X 35,00 %, )

3) Independently repeat step 2 for B times,
obtaining bootstrap replication for process
capability index

Che 0, (21 (B
Hence, calculate
B hatt
Cp (D)
Cri()= ZP_W
o B
Then, the estimated standard error

6= {EI:T 51 Evy- € o}l}

|~

The number of bootstrap replications, B, depends
on the application. For standard error estimates,
Efron and Tibshirani (1993) suggested B to be
between 25 and 200, However, Efron and
Tibshirani (1993) pointed out that for confidence
intervals construction, B should be 500 or 1000
in order to make the variability of the estimates
acceptably fow.

Franklin and Wasserman (1991} has employed
the standard, percentile and bias corrected
percentile confidence interval on the classical C;
index. In this paper, we will employ the Bias
Corrected and Accelerated confidence interval
(also known as Bca) for the classical and the
robust C,; index. Efron and Tibshirani (1993)
enumerated that the Bea method has two
attractive properties, i.c. it is transformation
respecting and second-order accurate.

A Simulation Study

In an effort to evaluate the performance of the
bootsirap confidence intervals of the classical Cpy
index and the bootsirap confidence intervals of
the C, index based on M-estimator, a series of
simulations were carried out, one on a normal
process and another on a highly skewed process.
The vafue for the upper specification limit and
the lower specification limit are chosen to be 3
and -3, respectively. For the normal process, the
data was generated from a standard normal
distribution, i.e. x ~ N(0,1). Following Kotz and




Johnson (1993), two non-normal processes were
generated from a skewed distribution with finite

lower boundary, namely » * distribution with

45 degree of freedom and a heavy-ailed
distribution, namely a student-t distribution with
8 degree of freedom. In each case, the
distribution is standardized by suitably shifted
and scaled the distribution to produce common
mean (x4 =0) and common standard deviation

(o =1). We also investigated the properties of
the bootstrap confidence intervals by considering
a data with 10% outliers. At each step, one
‘good’ observation from a N(0,1} was deleted
and replaced with a ‘bad’ datum point until 10%
outliers are obtained. The outliers are generated
from a normal distribution with =20 and

o =5. For each process, we considered two
samples of size n=20 and #=40.

The performance of the bootstrap confidence
interval is assessed by it’s coverage probability
and equitailness.  The Bias Corrected and
Accelerated {Bea) bootstrap confidence method
is applied to the classical C,; index and also the
Cpr index based on M-estimator. In this paper,
the value of the tuning constant used for the
p function is equal to 1.45. 1000 bootstrap

samples were drawn from a sample of size 20
and 40 and a bootstrap 95% confidence interval
was constructed for the classical and the robust
Cp index. This procedure was conducted on
normal process, skewed process and process

interval of each type, it was then determined
whether the confidence mterval actually
contained the true value C,. The simulation
runs were replicated 500 times to obtain the
coverage probability, i.e. the percentage of times
the actual C,; was contained in the intervals out
of 500 could be calculated. The results of the
simulation studies are summarized in Table 1-2.

It is interesting to note that for normal process,
both type of confidence intervals have coverage
which are reasonably closed to each other. The
values are consistently near the expected value of
0.95 for both sample sizes of #=20 and 40.
Nonetheless, the performance of the classical Cpx
is remarkably deteriorating for skewed process,
i.e. for chi-square and t distribution. Its coverage
probability was lower than the expected value of

0.95 by 5 and 11 for t and »° process, n=21{,

respectively. The performance of the C,; index
based on M-estimator seem to be less affected by
the skewed process indicated by a slight
decreased in the coverage probability.

The addition of 10% outliers to the ‘clean’
process prominently reduced the coverage of the
probability by almost 100%. It gives erroneous
results not only from the point of view of
equitailness but also from the point of view of
coverage probability. On the other hand, the C,;

based on M-estimator has slightly effected by the
outliers.

which have 10% outiiers.

For each confidence

Table 1: Coverage Probabilities for the bootstrap 95% Confidence Intervals, #=20

Process Estimate C,; using: Coverage | Lower Coverage | Upper Coverage
Distribution {%) (%) (%)
Normal x,s 93 3 5
{0,1) robust location and scale 95 1
Student-t X,8 90 5 5
(v=8) robust location and scale 96 2 2
42 X,8 84 12 4
(r=4.5) robust location and scale 94 G 0
10% X,S 35 0 63
outliers robust location and scale 94 | 0 6
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Table 2: Coverage Probabilities For the bootstrap 95% Confidence Intervals, #=40

Population Estimate C,; using: Coverage | Lower Coverage | Upper Coverage
Distribution (%) {%) (%)
Normal X,8 93 2 5
(0,1) robust location and scale 93 2 5
Student-t X, 91 4 5
(v=8) robust location and scale 94 4 2
4 2 X 28 88 8 4
(v =4.5) robust location and scale 93 7 0
10% X,8 0 0 100
outliers robust location and scale 89 0 11
Caonclusion sufficient for the stated *“95% confidence

The advantage of using bootstrap confidence
interval for constructing the C,, index is that its
usage does not require the usual assumption of
normality. We do not have to worry whether the
process is normal or not because it can be
calculated from any wunderlying process
distribution. The empirical studies suggest that
for a normal process, the classical Cy; and the
robust C,, have coverage probabilities which are
reasonably closed to the nominal one. It is quite
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