

UNIVERSITI PUTRA MALAYSIA

CHARACTERISATION OF PSEUDORABIES VIRUS AND ITS MUTANTS

ZEENATHUL NAZARIAH ALLAUDIN

FPV 1999 6

CHARACTERISATION OF PSEUDORABIES VIRUS AND ITS MUTANTS

By

ZEENATHUL NAZARIAH ALLAUDIN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in Faculty of Veterinary Medicine Universiti Putra Malaysia

May 1999

Dedicated with love and gratitude to:

ł

My husband, Mohamed Abu Baker Jailani

Who had supported me and had been very understanding throughout this long and demanding project, and was my constant source of encouragement and motivation whenever I got into a "brain-rut"!

My parents, Haji Allaudin and Hajjah Halimah

Who are fond of saying "Knowledge is Power", are the ones who started me all those years ago on the journey of knowledge which has brought me to where I am today.

ACKNOWLEDGEMENTS

An ambitious work piece from the very start and would never have been completed without the guidance of many individuals.

Credit where credit's due. Especially to my supervisor, Dr Mohd Azmi Mohd Lila, who was the brain-drain for this project, who constantly pushed me with ambitious ideas and motivated me to pursue. "You'll never know till you venture"! his motivational phrase that gave me persistence in my task. His constant guidance and encouragement helped me in the completion of my work.

I am grateful to my supervisory committee, Professor Dr Aini Ideris, Professor Dato' Dr Sheikh Omar Abdul Rahman and Dr Abdul Rahim Mutalib for their encouragement, suggestions and for kindly agreeing to supervise me in this Masters programme.

I am indebted to Dr Karim Sadun and En. Mohd Kamaruddin for their participation in laboratory works and generously sharing their knowledge with me. My sincere thanks to all the staffs in the Vaccine Laboratory, Institute of Bioscience and Electron Microscopy Unit for always being so willing to render assistance and allowed me to share facilities throughout the course of my study.

Last but not least, extended gratitude to my colleagues at the faculty and everybody who had helped or contributed in one way or another towards the completion of this study.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF PLATES	xii
LIST OF ABBREVIATIONS	xvi
ABSTRACT	xix
ABSTRAK	xxi

CHAPTER

I	INTRODUCTION	1
П	LITERATURE REVIEW	6
	Pseudorabies Virus	6
	The Physical Map of (glyco) Proteins on the Genome	7
	The Biological Properties of PrV Proteins	8
	The Functional Role of Viral Proteins in Virulence	12
	Immunological Role of PrV Gene Products	1
	Protective Immune Mechanisms	1
	Antibody Responses in Serum and on Mucosae	1
	T Cell Responses to PrV	1
	Viral Target Proteins.	1
	Pathogenesis	1
	Latency and Reactivation	2
	Molecular Biological Characterisation of Conventionally	_
	Attenuated Vaccine Strains of PrV	2
	Construction, Efficacy and Safety of PrV Deletion Mutants	2
	Construction	2
	Efficacy	2
	Safety	2
	Glycoprotein-Specific Antibody Assays To Differentiate	-
	between Infected and Vaccinated Pigs	2
	Thymidine Kinase (TK) Gene and Antiviral Drugs	2
	TK Gene	2
	Antiviral Drugs	3
	TK gene and Antiviral Drugs	3
	DNA Fingerprinting with Restriction Enzyme Analysis	3
п	FSTARLISHMENT OF A LOCAL PSEUDORARIES VIDUS	
111	CLONE (PrV-mAIP) AND DRUG RESISTANT MUTANTS	3
	Introduction	n
		3

	Materials and Methods	41
	Virus	41
	Plaque Purification	41
	Cell Culture Preparation	42
	Preparation of Primary CEF Cultures	43
	Cell Culture Inoculation	45
	Harvesting of Virus	45
	Purification of Virus	46
	Plaque Forming Assav	47
	Negative Contrast Electron Microscopy (NCEM)	47
	Establishment of Bromodeoxyuridine (BUdR) and	
	Iododeoxyuridine (IUdR) Resistant PrV	48
	Growth Curve Study	49
	Hemocytometer Cell Counting	49
	Growth-Curve Experiments	49
	Results	50
	Plaque Purification	50
	Stock Virus Preparation and Purification	51
	NCEM	51
	Antiviral Drugs (BUdR and IUdR) Resistant Mutants	51
	Growth Curve of Viruses	53
	Discussion	57
IV	DNA FINGERPRINTING OF PrV-mAIP AND MUTANTS OF PSEUDORABIES VIRUSES	62
	Introduction	62
	Materials and Methods	63
	Viruses	63
	DNA Extraction from Cell Associated Virus	63
	Ethanol Precipitation of DNA	64
	Determination of DNA Concentration and Purity	65
	DNA Digestion with Restriction Endonuclease Enzyme	65
	Electrophoresis and Photography	66
	Molecular Size Estimation of Viral DNA Fragments	67
	Results	67
	Discussion	81
v	PATHOGENICITY AND IMMUNOGENICITY OF	
	PSEUDORABIES DRUG RESISTANT MUTANTS	86
	Introduction	86
	Introduction Materials and Methods	86 89
	Introduction Materials and Methods Viruses	86 89 89
	Introduction Materials and Methods Viruses Cytopathogenicity Monitoring Cytopathic Effect	86 89 89 89

Pathogenicity of PrV-mAIP and Mutants in Mice	90
Protection Test	90
Serum Collection and Storage	91
Virus Isolation from Infected Mice Tissues	91
Preparation of Mouse Hyperimmune Sera	91
ELISA for Detection of Serum Antibody	92
Optimisation of ELISA Reagents	94
Virus Antigen	94
Conjugate	94
Determination of Cut-Off Point	95
Results	95
Cytopathogenicity Study	95
Pathogenicity of PrV-mAIP and Mutants in Mice	117
Protection Study	118
Antibody Responses	120
Discussion	122

VI AN ATTEMPT TO DETECT MUTATION IN THE THYMIDINE KINASE GENE 127

127

Introduction	127
Materials and Methods	128
Viruses	128
Amplification by PCR	128
Plasmid Cloning	129
Preparation of the DNA insert	129
Preparation of the Plasmid	130
Ligation of Plasmid Vector and Insert DNA	130
Preparation of Competent Cells	131
Preparation of Frozen Stock of Competent Cells	132
Transformation of Competent Cells	132
Analysis of Transformants	133
Small Scale Plasmid Extraction	133
Large Scale Plasmid Extraction ('Maxi-Prep')	134
Automated DNA Sequencing	135
Results	136
PCR Product Containing a Part of the TK Gene	136
Cloning	137
Sequencing Data	137
Discussion	155
I GENERAL DISCUSSION	157

BIBLIOGRAPHY	165
APPENDICES	190
Appendix AMedia and Related Tissue Culture SolutionAppendix BBuffers and SolutionsAppendix CBuffers for ELISAAppendix DMedia and Solutions for DNA Cloning	191 194 197 198
VITA	200

·

LIST OF TABLES

Table	e	Page
1	Molecular Size Estimates of <i>Bam</i> HI and <i>Hin</i> dIII Double Digested Restriction Endonuclease Fragments that Varies among PrV DNA (kb)	80
2	Molecular Size Estimates of KpnI Digested Restriction Endonuclease Fragments that Varies among PrV DNA (kb)	80
3	Molecular Size Estimates of SacI Digested Restriction Endonuclease Fragments that Varies among PrV DNA (kb)	80
4	Pathogenicity of PrVs in Mice	119
5	Detection of Infectious Virus in Mouse Tissues at Day 3 Postchallenge	119
6	Percentage of TK Gene Nucleotide Sequence Homology between the PrVs Tested and other PrV and Herpesviruses	138

LIST OF FIGURES

Figu	re	Page
1	Growth curve of PrV-mAIP	54
2	Growth curve of PrV-CD	54
3	Growth curve of PrV-BUdR7	55
4	Growth curve of PrV-BUdR10	55
5	Growth curve of PrV-IUdR9	56
6	Growth curve of PrV-IUdR10	56
7	A schematic representative of DNA cleavage patterns of PrVs digested with <i>Bam</i> HI Lanes, 1, PrV-mAIP, 2, PrV-CD, 3, PrV-BudR1, 4, PrV-BudR7, 5, PrV-BudR10, 6, PrV-IUdR5, M, DNA marker	76
8	A schematic representative of DNA cleavage patterns of PrVs double-digested with <i>Bam</i> HI and <i>Hin</i> dIII (fragments>2 5kb) Lanes, 1, PrV-mAIP, 2, PrV-CD, 3, PrV-BUdR1, 4, PrV-BUdR7, 5, PrV- BudR10, 6, PrV-IUdR5, 7, PrV-IUdR9, 8, PrV-IUdR10, M, DNA marker	77
9	A schematic representative of DNA cleavage patterns of PrVs digested with <i>KpnI</i> Lanes, 1, PrV-mAIP, 2, PrV-CD, 3, PrV-BudR1, 4, PrV-BUdR7, 5, PrV-BUdR10, 6, PrV-IUdR5, 7, PrV-IUdR9, 8, PrV-IUdR10, M, DNA marker	78
10	A schematic representative of DNA cleavage patterns of PrVs digested with A) <i>Hin</i> dIII and B) <i>BgI</i> II Lanes, A1, PrV-mAIP (similar cleavage patterns in all the PrVs studied), B1, PrV-mAIP (similar cleavage patterns in PrV-BUdR1, PrV-BUdR7, PrV-IUdR5, PrV-IUdR9, PrV-IUdR10), B2, PrV-CD, B3, PrV-BUdR10, M, DNA marker	79
11	Optimisation of virus antigen Samples of different antigen dilutions (1 100, 1 200, 1 400 and 1 800) were reacted with positive sera. The results were plotted against the optical density at the absorbance of 405 nm Ratios shown on the figure refer to antigen dilution	98

12	Optimisation of virus antigen. Samples of different antigen dilutions (1:100, 1:200, 1:400 and 1:800) were reacted with negative sera. The results were plotted against the optical density at the absorbance of 405 nm. Ratios shown on the figure refer to antigen dilution.	98
13	Optimisation of conjugate. Different conjugate dilutions (1:200, 1:500, 1:1000, 1:2000 and 1:4000) were reacted with positive sera. The results were plotted against the optical density at the absorbance of 405 nm. Ratios shown on the figure refer to antigen dilution	99
14	Optimisation of conjugate. Different conjugate dilutions (1:200, 1:500, 1:1000, 1:2000 and 1:4000) were reacted with negative sera. The results were plotted against the optical density at the absorbance of 405 nm. Ratios shown on the figure refer to antigen dilution.	99
15	Antibody response following primary immunisation of mice with PrV	121
16	Antibody response following challenge of mice with PrV-CD	121
17	The DNA sequence of tested PrVs for the promoter and N' terminus region of the thymidine kinase gene. The <i>Bam</i> HI and <i>Bs</i> RI restriction site are shown in the 1^{st} and 2^{nd} square respectively.	143
18	The translated region (nucleotide 228-398) and amino acid sequence of the 5' end thymidine kinase gene of the tested PrVs	144
19	DNA search homology between the PrVs tested and PrV strain NIA	145
20	DNA search homology between the PrVs tested and HVS	146
21	DNA search homology between the PrVs tested and EHV1	147
22	DNA search homology between the PrVs tested and EHV4	148
23	DNA search homology between the PrVs tested and HSV2	149
24	DNA search homology between the PrVs tested and VZV	150
25	DNA search homology between the PrVs tested and MarHV	151

26	DNA search homology between the PrVs tested and BHV4	152
27	DNA search homology between the PrVs tested and MDV	153
28	DNA search homology between the PrVs tested and HVT	154

ŝ

LIST OF PLATES

Plate		Page
1	The appearance of the purified PrV zone (as shown between the arrows) after being subjected to 10-60% (w/v) sucrose gradient centrifugation at 45,000 rpm for 18h at 4°C	52
2	Electronmicrograph of negatively stained purified PrV-mAIP virions under TEM (x 60 000 magnification)	52
3	BamHI and HindIII double digested cleavage profiles of PrV-DNAs Lanes, 1, 1 kb DNA ladder marker, 2, PrV-mAIP, 3, PrV-CD, 4, PrV-BUdR1, 5, PrV-BUdR7, 6, PrV-BUdR10, 7, PrV-IudR5, 8, PrV-IUdR9, 9, PrV-IUdR10, 10, λ DNA/EcoRI & HindIII markers	71
4	<i>Kpn</i> I cleavage profiles of PrV-DNAs Lanes, 1, 1 kb DNA ladder marker, 2, PrV-mAIP, 3, PrV-CD, 4, PrV-BUdR1, 5, PrV-BUdR7, 6, PrV-BUdR10, 7, PrV-IUdR5, 8, PrV-IUdR9, 9, PrV-IUdR10, 10, λ DNA/ <i>Eco</i> RI & Hind III markers	72
5	SacI cleavage profiles of PrV-DNAs Lanes, 1, 1 kb DNA ladder marker, 2, PrV-mAIP, 3, PrV-CD, 4, PrV-BUdR1, 5, PrV-BUdR7, 6, PrV-BUdR10, 7, PrV-IUdR5, 8, PrV-IUdR9, 9, PrV-IUdR10	73
6	HindIII cleavage profiles of PrV-DNAs Lanes, 1, 1 kb DNA ladder marker, 2, PrV-mAIP, 3, PrV-CD, 4, PrV-BUdR1, 5, PrV-BUdR7, 6, PrV-BUdR10, 7, PrV-IUdR5, 8, PrV-IUdR9, 9, PrV-IUdR10	74
7	<i>BgI</i> II cleavage profiles of PrV-DNAs Lanes ,1, 1 kb DNA ladder marker, 2, PrV-mAIP , 3, PrV-CD, 4, PrV-BUdR10, 5, PrV-IUdR5	75
8	Colour formation due to antibody-antigen reaction seen in an ELISA microtitre plate	95
9	Crystal Violet stained Control Vero cell culture (x 400 magnification)	100
10	Crystal Violet stained Control Vero cell culture (x 1000 magnification)	100
11	Giemsa Stained Control Vero cell culture (x 2000 magnification)	101
12	Giemsa Stained Control Vero cell culture (x 4000 magnification)	101

13	PrV-mAIP infected cells appeared rounded at 28 hrs PI (x1000 magnification).	102
14	CPE of PrV-BUdR1 appeared to have a mixture of rounded, balooned and syncytial cell formation at 28 hrs PI.(x 1000 magnification).	102
15	At 28 hrs PI, the monolayer of PrV-BUdR7 infected cells appeared as uninfected. The first sign of CPE observed at 36hrs PI (similar as PrV-BUdR10) (x 1000 magnification)	103
16	The first sign of CPE in PrV-BUdR10 infected Vero cells were obvious at 36 hrs PI (x 1000 magnification)	103
17	PrV-CD infected monolayer showed the earliest sign of CPE at 18 hrs PI. By 24 hrs PI, numerous clear rounded cells formed (x 1000 magnification).	104
18	Few rounded cells (CPE) were observed at 28 hrs PI with PrV- IUdR5 infection (x 1000 magnification)	104
19	Numerous rounded and balooned cells were observed with PrV- IUdR9 infection at 28 hrs PI (x 1000 magnification)	105
20	PrV-IUdR10 induced the formation of clear syncytial cells with many cytoplasmic extensions at 28 hrs PI (x 1000 magnification).	105
21	Progressive CPE formation at 48 hrs PI. PrV-mAIP infected monolayers showed numerous balooned cells (x 1000 magnification)	106
22	Progressive CPE formation at 48 hrs PI. Clear syncytial formation and few balooned cells in PrV-BUdR1 infection (x 1000 magnification)	106
23	PrV-BUdR7 produced pronounced syncytium formation with mixture of rounded cells at 48 hrs PI (x 1000 magnification)	107
24	At 48 hrs PI, PrV-BUdR10 infected monolayer maintained limited CPE (rounded cells) formation (x 1000 magnification)	107
25	Extensive CPE with PrV-CD at 48 hrs PI (x 400 magnification)	108
26	Extensive CPE with rounded cells in PrV-IUdR5 infection at 48 hrs PI (x 1000 magnification)	108

27	Extensive CPE with rounded cells in PrV-IUdR9 infection at 48 hrs PI (x 1000 magnification)	109
28	Extensive CPE with many cytoplasmic strands that gave the spider appearance to the cells in PrV-IUdR10 infection at 48 hrs PI (x 1000 magnification)	109
29	A plaque stained with crystal violet after PrV-mAIP infection (x 400 magnification)	110
30	Higher magnification ($x 1000$) of a plaque by PrV-mAIP infection containing numerous rounded and degenerated cells	110
31	A big plaque produced by PrV-BUdR1 containing a large polykaryocyte with multiple peripheral cytoplasmic extensions Crystal violet stained (x 400 magnification)	111
32	Higher magnification (x 1000) of a plaque by PrV-BUdR1, highlighting the fine cytoplasmic extensions from the syncytium formation	111
33	Three small plaques containing a mixture of syncytium and rounded degenerated cells These crystal violet stained plaques were produced by PrV-BUdR7 (x 400 magnification)	112
34	Higher magnification $(x1000)$ of a plaque from Plate 33 Thick cytoplasmic extensions were observed from a large polykaryocyte	112
35	Irregular small plaques by PrV-BUdR10 stained with crystal violet (x 400 magnification)	113
36	Higher magnification (x 1000) of a plaque from Plate 35 The plaque contained numerous degenerated rounded cells	113
37	PrV-CD produced very large, rounded plaque with irregular brim, contained degenerated cells and extensive cell-sloughed area Crystal violet stained (x 400 magnification)	114
38	PrV-IUdR10 produced irregular plaques with many syncytial cells These plaques were smaller than $PrV-CD$ and $PrV-IUdR5$ (x 400 magnification)	114
39	PrV-IUdR5 produce large plaques, comparable to PrV-CD Unlike the latter, the plaque contained numerous degenerated rounded cells without cell sloughing Crystal violet stained (x 400 magnification)	115

40	Higher magnification (x 1000) of the plaque in Plate 39	115
41	PrV-IUdR9 produced small regular plaque contained rounded and degenerated cells. The plaque was comparable to PrV-mAIP but bigger than BUdR10. Crystal violet stained (x 400 magnification).	116
42	Higher magnification (x 1000) of the plaque in Plate 41	116
43	PCR fragment of TK gene. All the PrVs (Lane3-9) produced the same length of PCR product (489 bp). Lanes; 1, 100bp DNA ladder; 2, primers; 3, PrV-mAIP; 4, PrV-BUdR1; 5, PrV-BUdR7; 6, PrV-BUdR10; 7, PrV-IUdR5; 8, PrV-IUdR9; 9, PrV-IUdR10	139
44	pSPORT plasmid from maxiprep. Lanes; 1, 1 kb DNA marker; 2, RNAse treated plasmid; 3, untreated plasmid	140
45	Double digestion of plasmid with <i>Eco</i> RI and <i>Hin</i> dIII. Lanes; 1, 1kb DNA marker; 2, undigested plasmid; 3, digested plasmid	141
46	PCR of recombinant plasmid. Lanes: 1, plasmid with insert (489 bp); 2, plasmid without insert; 3, 100 bp DNA ladder	142

LIST OF ABBREVIATIONS

ABTS	2,2'-azıno-dı-(3-ethylbenzthiazoline-6-sulfonic acid)
ACV	acyclovir
ADV	Aujeszky's disease virus
Ara-A	adenine arabinoside
Ara-T	1-D-arabinofuranosylthymine
ATP	adenosine triphosphate
ATV	antibiotic trypsin versin
BHK	baby hamster kidney
BHV	bovine herpesvirus
BMC	blood mononuclear cells
bp	base pair
BSA	bovine serum albumin
BU-BHK	BUdR resistant BHK
BUdR	bromodeoxyuridine
BVdU	E-5-(2-bromovinyl)-2'-deoxyuridine
CAV	cell-associated virus
CEF	chicken embryo fibroblast
cm	centimetre
cm^2	centimetre square
CMI	cell mediated immunity
CNS	central nervous system
СР	capsid protein
CPE	cytopathic effect
СТР	cytidosine triphosphate
DMSO	dımethylsulfoxıde
DNA	deoxynbonucleic acid
e g	for example
ECV	extracellular virus
EDTA	ethylene diamine tetra-acetate
EHV	equine herpesvirus
ELISA	enzyme linked immunosorbent assay
FBS	foetal bovine serum
FC	final concentration
FCS	foetal calf serum
g	gramme
H_2O_2	hydrogen peroxide
hr	hour
HSV	herpes simplex virus
HVS	saimiriine herpesvirus
HVT	herpesvirus of turkey
IE	immediate early gene
1 m	ıntramuscular
1 n	ıntranasal
IPTG	isopropylthiogalactosidase
IR	inverted repeat

IR_L	internal repeat
IR _R	inverted terminal
IUdR	ıododeoxyurıdıne
kb	kilobase
kDa	kılodalton
L15	Leibovitz's media
LAT	latency-associated transcripts
LB	Lennox medium
LD_{50}	50% lethal dose
LLT	large latency transcripts
LM(TK-ve)	mouse fibroblast strain deficient in TK activity
M	molar
Mab	monoclonal antibody
MarHV	marmoset hernesvirus
MDV	Marek's disease virus
MEM	Minimum Essential Media
MHC	major histocompatibility complex
NII IC	major instocompationity complex
	militro
1111	
mM	
	millinoiai multitude of infection
MKINA	messenger ribonucieic acid
MID	mean time to death
NCEM	negative contrast electron microscope
NIA3	pseudorables strain NIA-3
nm	nanometre
OD	optical density
ORF	open reading frame
PAA	phosphonoacetic acid
PBS	phosphate buffer saline
PBST	phosphate buffer saline tween 20
pc	post challenge
PCR	polymerase chain reaction
PFA	trisodium phosphonoformate
pfu	plaque forming unit
pН	hydrogen-10n concentration
PI	post infection/post inoculation
PK	pig kidney
pk	protein kinase
PrV	pseudorables virus
RE	restriction endonuclease
RFP	restriction fragment pattern
RK	rabbit kidney
RNA	ribonucleic acid
rpm	revolution per minute
SDS	sodium dodecyl sulphate
sec	second

SPF	specific pathogen free
T _c	cytotoxic T lymphocytes
TdR	thymidine
TE	Tris-EDTA
TEM	Transmission Electron Microscope
TFT	trifluorothymidine
ТК	thymidine kinase
TNE	Tris-NaCl-EDTA
U _L	unique long region
UPM	Universiti Putra Malaysia
Us	unique short region
UV	ultraviolet
V	volt
v/v	volume/volume
Vero	African green monkey kidney cell
VS	verses
VZV	varicella-zoster virus
w/v	weight/volume
Xgal	5 -bromo- 4 -chloro- 3 -indolyl- β -D-galactoside
μg	microgramme
μl	microlitre
μm	micrometre

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Sciences.

CHARACTERISATION OF PSEUDORABIES VIRUS AND ITS MUTANTS

By

ZEENATHUL NAZARIAH ALLAUDIN

May 1999

Chairman: Mohd Azmi Mohd Lila, Ph.D.

Faculty: Veterinary Medicine

A plaque-purified pseudorabies virus (PrV-mAIP) was established from a field isolate. Following exposure to bromodeoxyuridine (BUdR) and iododeoxyuridine (IUdR), six drug resistant mutants namely PrV-BUdR1, PrV-BUdR7, PrV-BUdR10, PrV-IUdR5, PrV-IUdR9 and PrV-IUdR10 were derived from PrV-mAIP. These viruses were passaged for 47 times in chicken embryo fibroblast (CEF) monolayer. These viruses and also including PrV-mAIP and a reference PrV (PrV-CD) were characterised. Differences in their eclipse phase and virus titres were determined based on the virus growth. Prolonged eclipse period (increment of 14 hrs) and reduction of the peak titres were observed in PrV-BUdR7, PrV-IUdR9 and PrV-IUdR10. DNA fingerprinting of the virus conducted with five restriction enzymes (RE) namely BamHI, KpnI, HindIII, SacI and Bg/II revealed variations in the number, size and migration rate of the restriction fragments only for BUdR resistant mutants. Generally, the RE pattern of all the IUdR resistant mutants appeared similar to PrV-mAIP, perhaps PrV is more stable to IUdR exposure. PrV-mAIP and PrV-CD were different, probably

due to strain diversity of different geographical area. The absence of BamHI fragment 7 in both PrV-BUdR1 and PrV-BUdR7 indicated highly to the loss of glycoprotein gE which is related to virulence. BamHI and KpnI enzymes appeared to be useful in discriminating the viruses. Alteration in the rate and type of cytopathic effect (CPE) were noticed in the viruses. The pronounced syncytium forming CPE in PrV-BUdR1, PrV-BUdR7 and PrV-IUdR10 indicated the loss of glycoprotein gC which usually plays a role in virus adsorption and cell to cell fusion. Similar to PrV-mAIP, the mutants were not pathogenic to mice. However, immunisation with these viruses conferred 100% protection (except PrV-BUdR10) in mice upon challenge infection with the virulent PrV (PrV-CD). Mice immunised with PrV-BUdR10 produced similar antibody levels to those of PrV-mAIP but the degree of protection was reduced by 10%. The non pathogenic nature of the PrVs is known to be related to the deletion or mutation of the thymidine kinase (TK) gene. Thus, the 5' end of the gene of the PrVs was sequenced to identify any mutation. No variation was identified in the 399 bp nucleotide sequence data. However, the sequence showed various percentage of homology when pair-wise homology search were conducted against ten herpesviruses. Homology percentage ranged from 44.4% with herpesvirus of turkey (HVT) to the highly homologous (93.5%) of an established PrV strain NIA-3. These study demonstrate the variation among the mutants. All the mutants (except for PrV-BUdR10) could be exploited for future research work for vaccine development. Genetic manipulation on these viruses such as insertion, deletion or recombination of foreign genes would be a valuable pathway to venture into.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

PENCIRIAN VIRUS PSEUDORABIES DAN MUTANNYA

Oleh

ZEENATHUL NAZARIAH ALLAUDIN

Mei 1999

Pengerusi: Mohd Azmi Mohd Lila, Ph.D.

Fakulti: Perubatan Veterinar

Virus pseudorabies (PrV) PrV-mAIP telah dihasilkan melalui kaedah penulenan-plak ke atas satu pencilan PrV. Selepas pendedahan kepada bromodeoxyuridine (BUdR) dan iododeoxyuridine (IUdR), enam jenis mutan yang resistan iaitu PrV-BUdR1, PrV-BUdR7, PrV-BUdR10, PrV-IUdR5, PrV-IUdR9 dan PrV-IUdR10 telah dihasilkan daripada PrV-mAIP. Kesemua mutan tersebut telah dipasaj secara berterusan sebanyak 47 kali di atas sel ekalapisan fibroblas embrio avian. Pencirian telah dilaksanakan ke atas mutan, PrV-mAIP dan virus rujukan (PrV-CD). Perbedaan dari segi tempoh senyap dan titer virus telah diperhatikan dari replikasi virus. Peningkatan tempoh senyap (14 jam) dan penurunan titer kemuncak virus telah dipamerkan oleh PrV-BUdR7, PrV-IUdR9 dan PrV-IUdR10. Analisis endonukleas penyekat (AEP) dengan 5 enzim penyekat (BamHI, KpnI, HindIII, SacI dan Bg/II) telah memberikan variasi dari segi bilangan, saiz dan kadar migrasi fragmen terbatas pada mutan yang resistan terhadap BUdR. Corak fragmen terbatas oleh mutan yang resistan terhadap IUdR menyerupai PrV-mAIP, kemungkinan virus ini lebih stabil terhadap

pendedahan IUdR. Variasi strain disebabkan kelainan kawasan geografi berkemungkinan menjadi penyebab perbedaan ketara AEP antara PrV-mAIP dan PrV-CD. Ketiadaan fragmen BamHI 7 pada PrV-BUdR1 danPrV-BUdR7 menunjukkan kemungkinan ketiadaan glikoprotin gE yang berkaitan dengan kevirulenan. Enzim BamHI dan KpnI didapati berguna untuk diskriminasi analisis restriksi. Pertukaran dari segi kadar dan jenis kesan sitopatik juga diperhatikan. Pembentukan kesan sitopatik sinsitium oleh PrV-BUdR1, PrV-BUdR7 dan PrV-IUdR10 menunjukkan kemungkinan ketiadaan glikoprotin gC yang berperanan dalam penyerapan-masuk virus ke dalam sel dan fusi sel. Virus mutan tidak patogenik terhadap mencit seperti PrV-mAIP. Immunisasi mencit dengan virus-virus mutan ini (kecuali PrV-BUdR10) memberikan perlindungan 100%. PrV-BUdR10 menghasilkan tahap antibodi yang menyerupai PrV-mAIP, tetapi tahap perlindungan mencit mengalami penurunan 10%. Sifat ketidakpatogenikan PrV ini berkaitan dengan delesi atau mutasi terhadap gen thymidine kinase (TK). Oleh kerana itu, terminal 5' gen pada kesemua PrV telah dijujukkan untuk mengenalpasti sebarang mutasi. Tiada perbedaan didapati pada jujukan bersaiz 399 bp tersebut. Jujukan ini mempamerkan perbedaan peratusan homologi apabila dibandingkan dengan jujukan 10 herpesvirus lain. Peratusan homologi serendah 44.4% dengan HVT kepada yang tertinggi (93.5%) diperolehi dengan PrV NIA-3. Kajian ini mempamerkan variasi diantara mutan. Kesemua mutan kecuali PrV-BUdR10 berkeupayaan untuk dieksploitasikan untuk kajian vaksin masa depan. Manipulasi genetik terhadap virus ini seperti insersi, delesi dan rekombinasi gen asing merupakan suatu era kajian yang produktif.

CHAPTER I

INTRODUCTION

Pseudorabies virus (PrV) (synonym: porcine herpesvirus type 1 or Aujeszky's disease virus (ADV)) is a member of the family *Herpesviridae*, subfamily *Alphaherpesvirinae*. The virus infects domestic and wild animals (Gustafson, 1986) but not humans (Prieto, 1991). The infection in swine is indigenous and wide spread, causing severe economic losses world-wide (Christensen, 1988). Although swine is the primary reservoir of the virus, other animal species including sheep, goat, cattle, dogs and cats may be affected (Gustafson, 1986).

The first report of pseudorabies in scientific literature was done by Aujeszky (1902). He recovered a virus from an ox, a dog and a cat, which was serially transmissible to rabbits and guineapigs. The syndrome was described and differences from rabies were pointed out. Hanson (1954) suggested that the disease was present in the United States as early as 1813. The serologic identity of "mad itch" as it came to be called in the United States, with Aujeszky's disease was established by Shope (1931).

Although some countries, among them Australia, Canada and Norway appear to be free of PrV, the disease is distributed world-wide and has a great economic impact on the pig industry (Van Oirschot *et al.*, 1990). PrV causes multimillion dollar losses annually in the United States and other countries (Gustafson, 1986). For example, the estimated economic loss in The Netherlands was between \$25-\$40 million each year. In the United Kingdom, an acute outbreak in an unvaccinated herd cost about \$250 per sow per year (Muirhead, 1984).

Infections by PrV may run an acute (Baskerville *et al.*, 1973) or subclinical course depending on the virulence of the virus and the age of the pig. The infection in swine is manifested by various degrees of respiratory distress, nervous disorders and mortality (Baskerville *et al.*, 1973). Abortions and stillbirth in sows, neurological disorders in piglets and respiratory signs in fattening pigs are the most prominent symptoms of the disease. Mortality in young piglets approaches 100%, whereas mortality in fattening pigs is usually less than 5% (Van Oirschot *et al.*, 1990a). Infected pigs shed PrV for 2-3 weeks (Van Oirschot *et al.*, 1990a).

Like other herpesviruses, PrV has the propensity to establish a latent infection (Sabo and Rajcani, 1976; Beran *et al.*, 1980). Latently infected swine should be regarded as a putative permanent source for transmission of PrV to other susceptible animals (Rziha *et al.*, 1986). Reactivation of latent PrV may result in excretion of the infectious virus and transmission to other

