

UNIVERSITI PUTRA MALAYSIA

EFFECTS OF SINGLE- AND MIXED-CULTURE FERMENTATION OF RECONSTITUTED SKIM MILK AND SUBSEQUENT COLD STORAGE ON MICROBIAL SURVIVAL, POST-ACIDIFICATION AND SELECTED METABOLITE CONCENTRATIONS

> MARYAM MOLAVI SADR FSTM 2009 28

EFFECTS OF SINGLE- AND MIXED-CULTURE FERMENTATION OF RECONSTITUTED SKIM MILK AND SUBSEQUENT COLD STORAGE ON MICROBIAL SURVIVAL, POST-ACIDIFICATION AND SELECTED METABOLITE CONCENTRATIONS

By

MARYAM MOLAVI SADR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2009

Dedicated to

my beloved mother,

for being a constant role model of

commitment and unconditional love.

She has provided me with good

example of faith in God, strength and determination.

Without her endless support, I am not sure any of

this would have ever been possible.

I love you.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF SINGLE- AND MIXED-CULTURE FERMENTATION OF RECONSTITUTED SKIM MILK AND SUBSEQUENT COLD STORAGE ON MICROBIAL SURVIVAL, POST-ACIDIFICATION AND SELECTED METABOLITE CONCENTRATIONS

By

MARYAM MOLAVI SADR

October 2009

Chairman : Professor Mohd Yazid Abdul Manap, PhD

Faculty : Food Science and Technology

The use of *Bifidobacterium* spp. in fermented milks in order to improve the microbial balance in the human gut has become very popular in recent years. The present study was carried out to investigate the effect of culture composition and storage time on microbial growth, acidification properties and formation of metabolites in fermented milks containing *Bifidobacterium pseudocatenulatum* G4, *Streptococcus thermophilus* TH4 and *L. delbrueckii* subsp. *bulgaricus* LB12, after fermentation and during 4 weeks of storage at 4 °C. All strains used for inoculation were in pure and mixed cultures, including all the possible combinations between them. Fermentation and lag times

ranged from 266 to 743 min and 5 to 35 min in single and mixed starter cultures, respectively. The titratable acidity and pH showed similar increasing or decreasing pattern after preparation and storage of fermented milks. The least pH and highest titratable acidity during the storage period was observed with single strain of *L. delbrueckii* subsp. *bulgaricus* LB12. The highest counts of *L. delbrueckii* subsp. *bulgaricus* LB12. The highest counts of *L. delbrueckii* subsp. *bulgaricus* LB12, *S. thermophilus* TH4 and *B. pseudocatenulatum* G4 was 8.54, 8.89, and 8.52 log₁₀ cfu/mL, respectively. In single and all mixed cultures containing *B. pseudocatenulatum* G4, the viable probiotic cell count remained above 7 log₁₀ cfu/mL over 4 weeks of storage.

Carbohydrates, organic acids and amino acids were measured by high performance liquid chromatography method using refractive index, ultra violet and photodiode array detectors, respectively. Accumulation of glucose and galactose due to lactose degradation was found in the prepared fermented milks. The highest lactose breakdown during fermentation was observed in products fermented with mixed culture of *B. pseudocatenulatum* G4 and *L. delbrueckii* subsp. *bulgaricus* LB12 with decomposition of 41.71 % of the initial lactose content. The levels of certain organic compounds (citric, acetic, lactic, pyruvic and formic) were significantly (P < 0.05) affected by the type of starter culture. The concentration of lactic acid increased after fermentation and during storage, reaching to a maximum content of 8335 mg/L in traditional yoghurt culture (LS) by Week 4. A reduction in citric acid content was observed in all the prepared fermented milks throughout the fermentation and storage. The considerable (P < 0.05) increase in the content of essential free amino acids was observed in phenylalanine,

methionine, valine, and histidine levels. A higher concentration of free amino acids observed were in mixed culture of *B. pseudocatenulatum* G4, *L. delbrueckii* subsp. *bulgaricus* LB12 and *S. thermophilus* TH4 compared with the other cultures. The quantities of free amino acids were found to be much lower in single culture than mixed culture fermentations.

Thirty seven volatile compounds were detected using gas chromatography coupled to time-of-flight mass spectrometer (GC-TOFMS). However, only eight of them were further monitored as they represented more than 98% of headspace volatile flavor compounds of the fermented milk. Equilibrium volatile headspace concentration of acetaldehyde, acetone, ethyl acetate, 2-butanone, ethanol, 2,3-butanedione (diacetyl), ethyl butyrate and 3-hydroxy-2-butanone (acetoin) concentrations were above the taste threshold level of 0.06 mg/L in almost all the prepared fermented milks. The acetaldehyde levels in the fermented milk samples ranged from 5.29 to 14.08 mg/L, with single strain of *L. delbrueckii* subsp. *bulgaricus* LB12 producing the highest level of acetaldehyde. Equilibrium volatile headspace concentration of ethanol decreased when bifidobacteria was used in the mixed cultures. Single culture of *L. delbrueckii* subsp. *bulgaricus* LB12 was observed to be the most active strain in synthesizing acetoin.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN FERMENTASI KULTUR TUNGGAL DAN CAMPURAN DALAM PEMBENTUKKAN SEMULA SUSU TANPA LEMAK SERTA PENYIMPANAN SEJUK BEKU SECARA BERKALA TERHADAP KETAHANAN MIKROBIAL, POS-PENGASIDAN DAN KEPEKATAN METABOLIT TERTENTU

Oleh

MARYAM MOLAVI SADR

October 2009

Pengerusi : Profesor Mohd Yazid Abdul Manap, PhD

Fakulti : Sains dan Teknologi Makanan

Penggunaan *Bifidobacterium spp.* di dalam susu fermentasi untuk meningkatkan keseimbangan mikrob di dalam perut manusia telah menjadi sangat popular pada masa ini. Kajian telah dijalankan untuk mengenalpasti kesan komposisi kultur dan masa storan pada pertumbuhan mikro-organisma, pengasidan dan pembentukan metabolisma yang terhasil di dalam fermentasi susu yang mengandungi *Bifidobacterium pseudocatenulatum* G4, *Streptococcus thermophilus* TH4 dan *L. delbrueckii* subsp. *bulgaricus* LB12, selepas penapaian selama 4 minggu pada suhu penyimpanan 4 °C. Semua sarin telah digunakan untuk penginokulatan ke dalam kultur tulen dan campuran, termasuk keseluruhan penggabungan yang mungkin berlaku antara mikrob. Penapaian dan masa-masa susulan berkadaran dari 266 hingga 743 min dalam kultur pemula dan 5 hingga 35 min dalam kultur campuran. Keasidan tertitrat dan pH menunjukkan pola pertambahan atau penurunan yang serupa selepas penyediaan dan penyimpanan

fermentasi susu. Strain tunggal *L. delbrueckii* subsp. *bulgaricus* LB12 telah menunjukkan bacaan pH terendah dan keasidan tertitrat yang tertinggi semasa tempoh penyimpanan. Bacaan tertinggi bagi *L. delbrueckii* subsp. *bulgaricus* LB12, *S. thermophilus* TH4 dan *B. pseudocatenulatum* G4 adalah 8.54, 8.89, dan 8.52 log10 cfu/mL. Dalam kultur tunggal dan kesemua kultur campuran mengandungi *B. pseudocatenulatum* G4, bilangan sel probiotik kekal atas baccan 7 log10 cfu/mL setelah lebih 4 minggu penyimpanan.

Karbohidrat, asid organik dan asid amino telah diukur dengan menggunakan kaedah kromatografi cecair prestasi tinggi menggunakan pengesan indeks biasan, ultra ungu dan tatasusun fotodiod. Pengumpulan glukosa dan galaktosa akibat daripada degradasi laktosa telah ditemui dalam fermentasi susu. degradasi laktosa tertinggi semasa fermentasi telah diperhatikan dalam produk penapaian dengan kultur campuran B. pseudocatenulatum G4 dan L. delbrueckii subsp. bulgaricus LB12 dengan penguraian sebanyak 41.71 % pada permulaan kandungan laktosa. Tahap amaun bagi sebatiansebatian organik tertentu (sitrik, asetik, laktik, piruvik dan formik) adalah ternyata (P <0.05) terjejas oleh kultur jenis pemula. Tahap kepekatan asid laktik bertambah selepas penapaian dan semasa penyimpanan, sehingga mencapai kandungan maksimum 8335 mg/L dalam kultur yogurt tradisional (LS) dalam minggu ke-4. Penurunan dalam kandungan asid sitrik telah diperhatikan di dalam semua susu fermentasi sepanjang penapaian dan penyimpanan. Peninggkatan (P < 0.05) yang bererti pada kandungan asid amino bebas penting telah diperhatikan dalam fenilalanina, metionina, valina, dan histidina. Kepekatan asid amino bebas yang tinggi telah didapati dalam strain tunggal B. pseudocatenulatum G4, L. delbrueckii subsp. bulgaricus LB12 dan S. thermophilus TH4

bebanding kultur-kultur lain. Kuantiti asid amino bebas dalam kultur asli didapati kurang berbanding kultur bercampur.

Tiga puluh tujuh sebatian meruap telah dikesan menggunakan gas kromatografi yang dipasang dengan spektrometer jisim 'time-of-flight' (GC-TOFMS). Namun begitu, hanya lapan sebatian yang terus diawasi kerana menunjukkan lebih dari 98% ruang tutup pemeruapan sebatian dalam fermentasi susu. Keseimbangan kepekatan ruang tutup pemeruapan bagi asetaldehid, aseton, etil asetat, 2-butanon, etanol, 2,3- butanadion (diasetil), etil butirate dan 3-hidroksi-2butanon (asetoin) adalah berada atas tahap ambang rasa 0.06 mg/L dalam semua susu fermentasi. Tahap asetaldehid di dalam sampel fermentasi susu adalah berkadaran dari 5.29 hingga 14.08 mg/L, dengan menunjukkan strain tunggal *L. delbrueckii* subsp. *bulgaricus* LB12 telah menghasilkan tahap asetaldehid tertinggi. Keseimbangan kepekatan ruang tutup pemeruapan etanol berkurang apabila bifidobacteria telah digunakan dalam kultur campuran. Kultur tunggal *L. delbrueckii* subsp. *bulgaricus* LB12 telah didapati sebagai strain paling aktif dalam pensintesisan asetoin.

ACKNOWLEDGEMENTS

Thanks God for His helping out during whole course of my life. I would like to take this opportunity to express my heartfelt gratitude to a number of people without whose help and support this thesis would never have been finished.

First and foremost, I wish to extend my heartfelt gratitude to my main supervisor Prof. Dr Mohd Yazid Abdul Manap (Faculty of Food Science and Technology, Department of Food Technology) for his supervision, guidance, and encouragement. Without his continuous support, this thesis would have not been accomplished.

My deep sense of gratitude and respect to Associate Prof. Dr. Sharifah Kharidah Syed Muhamad (Faculty of Food Science and Technology, Department of Food Science) for her concrete advice and understanding throughout this study.

I would like to express my deepest appreciation to Prof. Dr. Nazamid Saari (Faculty of Food Science and Technology, Department of Food Science) for his advice and valuable time which spent to me in this research.

I am deeply grateful to my respectable co-supervisor Dr. Seyed Hamed Mirhosseini (Faculty of Food Science and Technology, Department of Food Technology), who has always spent his valuable time to look into every detail of my results, and given invaluable advice.

I would also like to thank Associate Prof. Dr. Shuhaimi Mustafa (Faculty of Biotechnology and Biomolecular Sciences, Department of Microbiology) for his detailed comments and advice on every aspect.

My sincere gratitude and respect to my beloved parents, my sister and brother for their countless love, support, patience and understanding during not only this project but also my entire life.

I would like to express my thankfulness to Mr.Halim and Mr.Azman for their kindness and great advice. I would like to thank my dear friends and Food Biotechnology Laboratory members, especially Arezou, Barka, Anas, Farnaz and Babak for all their kind supports and generosity to share their experiences with me during this research.

I certify that an Examination Committee met on October 01, 2009 to conduct the final examination of Maryam Molavi Sadr on his Master of Science thesis entitled "Effect of Single and Mixed Culture Fermentation of Reconstituted Skim Milk and Subsequent Cold Storage on Microbial Survival, Post-acidification and Selected Metabolite Concentrations" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the Master of Science degree.

Members of the Examination Committee are as Follows:

Jamilah Bakar, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Hasanah Mohd Ghazali, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Lasekan Olusegun, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Zaiton Binti Hasan, PhD

Associate Professor Faculty of Science and Technology Universiti Sains Islam Malaysia (External Examiner)

> **Bujang Kim Huat, PhD** Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohd Yazid Abdul Manap, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Nazamid Saari, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Sharifah Kharidah Syed Muhamad, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Seyed Hamed Mirhosseini, PhD

Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 February 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

> MARYAM MOLAVI SADR Date: 22 February 2010

TABLE OF CONTENTS

ii
iii
vi
ix
xi
xiii
xviii
xxii
xxiii

CHAPTER

1	INTF	RODUCTION	1
2	LITI	ERATURE REVIEW	6
	2.1.	Functional foods	6
	2.2.	Definition of probiotic	8
		2.2.1. Microorganisms used as probiotics	8
		2.2.2 Beneficial effects and application of probiotic	10
	2.3.	Bifidobacteria	15
	2.4.	Bifidobacterium pseudocatenulatum	16
	2.5.	Lactobacilli	18
	2.6.	Starter culture	19
		2.6.1. Lactic starter culture	21
		2.6.2. Bifidobacteria starter culture	23
	2.7.	Fermented milk	24
		2.7.1. Yoghurt	26
		2.7.2. Bio-yoghurt	26
	2.8.	Metabolism of LAB and bifidobacteria in milk	27
		2.8.1. Carbohydrate uptake	27
		2.8.2. Citrate uptake	30
		2.8.3. Formation of secondary metabolites	32
	2.9.	Microbial Interaction	38
	2.10.	Solid phase micro extraction (SPME)	42
3	MAT	TERIALS AND METHODS	46
	3.1.	Materials	46

	3.1.1. Microorganisms	46
	3.1.2. Media	46
	3.1.3. Preparation method	47
3.2.	Production of fermented milk	48
	3.2.1. Material	48
	3.2.2. Fermentation process	48
	3.2.3. Storage of fermented milk	50
3.3.	Enumeration of bifidobacteria and LAB	50
	3.3.1. Materials	50
	3.3.2. Method of enumeration	50
3.4	Measuring fermentation characteristics	51
2111	3.4.1. Fermentation time and lag time	51
	3.4.2 Measuring of the pH and titratable acidity	52
35	Measuring of carbohydrates	52
5.5.	3.5.1 Chemicals and reagents	52
	3.5.7. Extraction and senaration of carbohydrates	53
36	Measuring of organic acids	54
5.0.	3.6.1 Chemicals and reagents	54
	3.6.2 Extraction and separation of organic acids	54
37	Measuring of free amino acids	55
5.7.	3.7.1. Chemicals and reagents	55
	3.7.2 Extraction of free amino acids	55
38	Measuring of volatile flavor compounds in fermented milks	57
5.0.	2.8.1. Chamicals and reagonts	57
	2.8.2 HS SDME procedure	57
	2.8.2 Cas abromatographic conditions (CC EID and CC MS)	50
3.0	Characterization of volatile flavor compounds	50
3.9.	Statistical analysis	50
DEGL		<i>c</i> 1
RESU	LTS AND DISCUSSION	61
4.1.	Acidification properties of the starter cultures	61
	4.1.1. Fermentation time and lag time	61
	4.1.2. pH reduction and post-acidification during cold	
	storage	62
4.2.	Growth and survival of the LAB and bifidobacteria	
	after fermentation and cold storage	67
	4.2.1. B. pseudocatenulatum G4	67
	4.2.2. L. delbrueckii subsp. bulgaricus LB12	71
	4.2.3. <i>S. thermonhilus</i> TH4	74
4.3.	Changes in carbohydrates after fermentation and cold	
	storage	76
	4 3 1. Glucose	76
	4 3 2. Galactose	79
	4 3 3 Lactose	81
44	Formation of organic acids after fermentation and cold	01
 .	i ormanon or organic acros arter termentation and colu	

4

	Storage	83
	4.4.1. Citric acid	83
	4.4.2. Acetic acid	86
	4.4.3. Lactic acid	88
	4.4.4. Pyruvic acid	91
	4.4.5. Formic acid	93
4.5.	Changes in amino acids after fermentation and cold storage	95
	4.5.1. Aspartic acid	95
	4.5.2. Glutamic acid	99
	4.5.3. Serine	101
	4.5.4. Glycine	103
	4.5.5. Histidine	105
	4.5.6. Arginine	107
	4.5.7. Threonine	109
	4.5.8. Alanine	111
	4.5.9. Proline	113
	4.5.10. Tyrosine	115
	4.5.11. Valine	117
	4.5.12. Methionine	119
	4.5.13. Cysteine	121
	4.5.14. Isoleucine	123
	4.5.15. Leucine	125
	4.5.16. Phenylalanine	127
	4.5.17. Lysine	129
4.6.	Equilibrium volatile headspace analysis of fermented milk	
	using solid phase microextraction (SPME)	134
	4.6.1. Identification of volatile flavor compounds	134
	4.6.2. Performance characteristics	136
	4.6.2.1. Linearity	136
	4.6.2.2. Accuracy	138
	4.6.2.3. Precision	138
	4.6.2.4. Detection and quantification limits	139
4.7.	Monitoring of the volatile flavor compounds during	
	Fermentation and cold storage	139
	4.7.1. Acetaldehyde	139
	4.7.2. Acetone	144
	4.7.3. Ethyl acetate	146
	4.7.4. 2-butanone	148
	4./.5. Ethanol	150
	4./.6. 2,3-Butanedione (diacetyl)	153
	4././. Ethyl butyrate	155
	4.7.8. 3-Hydroxy-2-butanone (acetoin)	157

5 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE WORK

160

5.1.	Conclusions	160
5.2.	Recommendations	163
REFERENCES		165
APPENDICES		185
BIODATA OF THE STUDENT		193

LIST OF TABLES

Table		Page
2.1	Bifidobacteria and other microorganisms used as probiotics	9
2.2	The differences between lactobacilli and bifidobacteria	19
2.3	Starter cultures used in different types of fermented milk	21
3.1	Codes for Bifidobacteria and LAB strains combinations used for production of single and mixed starter cultures	48
4.1	Fermentation time and lag time (mean \pm SD, $n=3$) of different starter cultures used for manufacture of fermented milks	62
4.2	Significant effect of fermentation on pH, titratable acidity (% lactic acid, w/v) and growth of the LAB and Bifidobacteria ($log_{10} cfu/mL$) shown as a mean± SD, F-ratio and p-value	63
4.3	The significance of each independent variable effect indicated by using F-ratio and p-value	67
4.4	Changes in viable counts of <i>B. pseudocatenulatum</i> G4 (\log_{10} cfu/mL) after fermentation and every one week during storage	69
4.5	Changes in viable counts of <i>L. delbrueckii</i> subsp. <i>bulgaricus</i> LB12(\log_{10} cfu/mL) after fermentation and every one weekduring storage	73
4.6	Changes in viable counts of <i>S. thermophilus</i> TH4 (\log_{10} cfu/mL) after fermentation and every one week during storage	75
4.7	Significant effect of fermentation on the quantity of organic acids shown by concentration (Mean \pm SD), F-ratio and p-value	77
4.8	The significance of each independent variable effect indicated by using F-ratio and p-value	77
4.9	Glucose content (mg/L) before and after fermentation and every one week during cold storage	78
4.10	Galactose content (mg/L) before and after fermentation and every one week during cold storage	80

- 4.11 Lactose content (mg/L) before and after fermentation and every one 82 week during cold storage
- 4.12 Significant effect of fermentation on the quantity of organic acids 84 shown by concentration (Mean± SD), F-ratio and p-value
- 4.13 The significance of each independent variable effect indicated by 84 using F-ratio and p-value
- 4.14 Citric acid content (mg/L) before and after fermentation and every one 85 week during cold storage
- 4.15 Acetic acid content (mg/L) before and after fermentation and every 87 one week during cold storage
- 4.16 Lactic acid content (mg/L) before and after fermentation and every 90 one week during cold storage
- 4.17 Pyruvic acid content (mg/L) before and after fermentation and every 92 one week during cold storage
- 4.18 Formic acid content (mg/L) before and after fermentation and every 94 one week during cold storage
- 4.19 Significant effect of fermentation on the quantity of amino acids 96 shown by concentration (Mean± SD), F-ratio and p-value
- 4.20 The significance of each independent variable effect indicated by 97 using F-ratio and p-value
- 4.21 Aspartic acid content (mg/L) before and after fermentation and every 98 one week during cold storage
- 4.22 Glutamic acid content (mg/L) before and after fermentation and every 100 one week during cold storage
- 4.23 Serine content (mg/L) before and after fermentation and every one 102 week during cold storage
- 4.24 Glycine content (mg/L) before and after fermentation and every one 104 week during cold storage
- 4.25 Histidine content (mg/L) before and after fermentation and every one 106 week during cold storage

4.26	Arginine content (mg/L) before and after fermentation and every one week during cold storage	108
4.27	Threonine content (mg/L) before and after fermentation and every one week during cold storage	110
4.28	Alanine content (mg/L) before and after fermentation and every one week during cold storage	112
4.29	Proline content (mg/L) before and after fermentation and every one week during cold storage	114
4.30	Tyrosine content (mg/L) before and after fermentation and every one week during cold storage	116
4.31	Valine content (mg/L) before and after fermentation and every one week during cold storage	118
4.32	Methionine content (mg/L) before and after fermentation and every one week during cold storage	120
4.33	Cysteine content (mg/L) before and after fermentation and every one week during cold storage	122
4.34	Isoleucine content (mg/L) before and after fermentation and every one week during cold storage	124
4.35	Leucine content (mg/L) before and after fermentation and every one week during cold storage	126
4.36	Phenylalanine content (mg/L) before and after fermentation and every one week during cold storage	128
4.37	Lysine content (mg/L) before and after fermentation and every one week during cold storage	130
4.38	Identification of volatile flavor compound in fermented milk using HS-SPME coupled with GC/MS	135
4.39	Performance characteristic of volatile compounds in fermented milk	137
4.40	RSD% of target flavor compounds in fermented milk	139
4.41	Significant effect of fermentation on the quantity of volatile flavor compound shown by concentration (Mean± SD), F-ratio and p-value	141

- 4.42 The significance of each independent variable effect indicated by 142 using F-ratio and p-value 4.43 Acetaldehyde content (mg/L) before and after fermentation and every 143 one week during cold storage 4.44 Acetone content (mg/L) before and after fermentation and every one 145 week during cold storage 4.45 Ethyl Acetate content (mg/L) before and after fermentation and every 147 one week during cold storage 4.46 2-butanone content (mg/L) before and after fermentation and every 149 one week during cold storage 4.47 Ethanol content (mean±SD, n=3) before and after fermentation and 152 every one week during cold storage
- 4.48 2,3-Butanedione content (mg/L) before and after fermentation and 154 every one week during cold storage
- 4.49 Ethyl butyrate content (mg/L) before and after fermentation and every 156 one week during cold storage
- 4.50 3-Hydroxy-2-butanone content (mg/L) before and after fermentation 158 and every one week during cold storage

LIST OF FIGURES

Figure		Page
2.1	Carbohydrate uptake and metabolism by homofermentative lactic acid bacteria	28
2.2	Generalized scheme for the fermentation of glucose in LAB and bifidobacteria	29
2.3	Generalized scheme for the formation of important metabolic products from pyruvate in lactic acid bacteria	31
2.4	Schematic diagram of a commercial SPME device	44
2.5	SPME extraction processes and thermal desorption into GC injector port	44
4.1	pH reduction in milk fermented with single and mixed starter cultures during 4 weeks of storage at 4 $^\circ\mathrm{C}$	64
4.2	Post-acidification in milk fermented with single and mixed starter cultures during 4 weeks of storage at 4 $^\circ\mathrm{C}$	66

LIST OF ABBREVIATIONS

μL	Micro liter
°C	degree Celsius
AOAC	Association of Official Analytical Chemists
В.	Bifidobacterium
CAR	carboxen
cfu	Colony forming unit
CO_2	Carbon dioxide
d	Day
e.g.	Example gratia (for example)
et al.	Etcetera (and company)
FID	Flame ionization detector
GC	Gas chromatography
GIT	Gastrointestinal tract
h	Hour
H^{+}	Hydrogen ion
H2SO4	Sulphuric acid
HCL	Hydrochloric acid
HPLC	High Performance Liquid Chromatography
HS	Head space
IDF	International Dairy Federation
L.	Lactobacillus
LAB	Lactic Acid Bacteria
LOD	Limit of detection
Log	Logarithm

LOQ	Limit of quantitation
min	minute
mL	Mililiter
MRS	de Man Rogosa Sharpe Medium
NaOH	Sodium Hydroxide
NNLP	nalidixic acid, neomycine sulfate, lithium chloride and paromomycine sulfate
PDMS	Polydimethylsiloxane
RI	Refractive index
rpm	Revolutions per minute
<i>S</i> .	Streptococcus
S.D.	Standard Deviation
SPME	Solid Phase Microextraction
ssp.	Species
Subsp.	Subspecies
TOFMS	Time-of-flight mass spectrometry
UV	Ultra Violet
WHO	World Health Organization

