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Generally, quantum states are abstract states that carry probabilistic information of 

position and momentum of any dynamical physical quantity in quantum system. 

E.P.Wigner (1932) had introduced a function that can determine the combination of 

position and momentum simultaneously, and it was the starting point to define a 

phase space probability distribution for a quantum mechanical system using density 

matrix formalism. This function named as Wigner Function. Recently, Wootters 

(1987) has developed a discrete phase space analogous to Wigner’s ideas. The space 

is based on Galois field or finite field. The geometry of the space is represented 

by N N×  point, whereN denoted the number of elements in the field and it must be a 

prime or a power of a prime numbers. In this work, we study the simplest way to 

compute the binary operations in finite field in order to form such a discrete space. 

We developed a program using Mathematica software to solve the binary operation 

in the finite field for the case of 3-qubit and 2-qutrit systems. The program developed 

should also be extendible for the higher number of qubit and qutrit. Each state is 

defined by a line aq bp c+ =  and parallel lines give equivalent states. The results 
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show that, there are 9 set of parallel lines for the 3-qubit system and 10 sets of 

parallel lines for 2-qutrit system. These complete set of parallel lines called a 

‘striation’.                                                                                                                                                                                                                                                       
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Secara amnya, keadaan-keadaan kuantum adalah keadaan abstrak yang membawa 

maklumat kebarangkalian berkaitan kedudukan dan momentum suatu kuantiti fizikal 

dinamik di dalam sistem kuantum. E.P.Wigner (1932) telah memperkenalkan suatu 

fungsi yang dapat menentukan kombinasi kedudukan dan momentum secara 

serentak, dan keadaan ini adalah suatu permulaan untuk menjelaskan taburan 

kebarangkalian ruang fasa untuk sistem kuantum mekanik dengan menggunakan 

formalisasi ketumpatan matrik. Fungsi tersebut dinamakan Fungsi Wigner. Baru-

baru ini, daripada analogi idea Wigner, Wootters (1987) telah membina suatu ruang 

fasa yang diskrit. Ruang fasa ini adalah berdasarkan medan terhingga atau medan 

galois. Struktur geometri fasa ruang ini diwakili oleh titik N N× , di mana N  ini 

menandakan bilangan elemen dalam medan ini dan ianya mesti nombor perdana atau 

kuasa nombor perdana. Dalam penyelidikan ini, kami mengkaji cara yang paling 

mudah untuk mengira operasi dedua dalam medan terhingga yang dapat digunakan 

untuk menghasilkan struktur fasa ruang yang diskrit. Kami telah bangunkan satu 
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program menggunakan perisian Mathematica untuk menyelesaikan operasi dedua 

dalam medan terhingga  untuk  sistem 3-qubit and 2-qutrit. Program yang dibina juga 

harus disambungkan untuk bilangan qubit dan qutrit yang tinggi. Setiap keadaan 

kuantum dalam ruang fasa ini ditakrifkan oleh garis yang dipunyai oleh persamaan 

aq bp c+ = , dan garis yang selari memberikan keadaan-keadaan kuantum yang 

sama. Hasil kajian menunjukkan , terdapat 9 set garis yang selari untuk sistem 3-

qubit dan 10 set garis yang selari untuk sistem 2-qutrit.  Set garis-garis selari ini 

dikenali sebagai “jaluran”.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Quantum Computation and Quantum Information 

 

Quantum computation (QC) and quantum information (QI) are nowadays active 

research fields in science and technology. The basic ideas of the fields come from 

four disciplines namely quantum mechanics, computer science, information theory 

and cryptography. According to Nielsen & Chuang, 2000, quantum computation and 

quantum information is the study of the information processing tasks that can be 

accomplished using quantum mechanical system. It is expected that the nature of 

quantum information processing will be significantly different given that quantum 

mechanics is altogether different from classical mechanics which govern the 

traditional information theory. It is crucial to mention the remarkable development of 

quantum factoring algorithm by Peter W. Shor (1997) giving an exponential speed-

up of prime factorization by a clever use of quantum superposition and interference. 

This has led to an explosive development in the area of quantum computing and 

quantum information. One particular interesting problem is to look for experimental 

realization of computers operating according to quantum mechanics can be 

exponentially faster than classical computers in specific tasks. In popular literature, 

we read claims that quantum information will contribute a method to secure the 

communications channels, data storage, speedup the computational task and many 

more. 
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The key ingredient in quantum information processing is the description of quantum 

states. The simplest being quantum bit or qubits used in the bulk of quantum 

computation and quantum information literature. Qubit provides the information of 

the state in two-level quantum system. The two-level quantum system can be realised 

as the elementary state of a spin 
2

1
 particle or equivalently as the horizontal and 

vertical polarization states of a photon or even the ground and first excited state of an 

electron in an atom, ignoring higher energy states in the manipulation. 

 

 

1.2 Quantum State 

 

Here we briefly describe the general concept of quantum state used to describe a 

quantum system, most of which are available in standard quantum mechanic text 

books. Quantum state is represented by a ray in a Hilbert space. For our purposes, we 

simply use a vector in Hilbert space denoted by ψ , and the projection onto a ray 

will be understood implicitly. Equipped with the vector space are basis kets ke , for 

which the vector ψ  can be written as linear combination of the basis states in the 

following way: 

 

k k
k

c eψ =∑     ,        kc ∈ℂ                                  (1.2.1)        
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Each vector ψ  has a conjugate dual known as bra, denoted by ψ . Thus, an inner 

product structure 1 2ψ ψ  is available for use to describe measurement results in 

scalar form. 

 

As an example, 0  and 1  form basis states for quantum bit. Just as classical bit, 

qubit also can be in basis state 0  or 1 , but qubit has the extra possibility that it 

can be in both basis states simultaneously. With this special property called 

superposition, qubits can be more powerful in quantum information processing than 

the classical bits. The superposition qubit is represented as the linear combination of 

0  and 1  i.e. 

 

                                             0 1a bψ = +      ,      ,a b∈ℂ                         (1.2.2) 

 

Normalization requires 1ψ ψ = , thus giving 
2 2

1a b+ = . The values 
2

a  and 
2

b  

give the probabilities of measuring the 0  and 1  states respectively. 

 

It is possible to associate the states ψ  with operators formed from outer products, 

namely the density operators i.e. 

 

 .ψρ ψ ψ=  (1.2.3) 

 
The advantage of using density operators instead of merely ket vectors is that they 

can also describe what is known as mixed states for statistical ensembles. In this 

work, however we will not consider mixed states at all but the density operators play 
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an important role in another alternative description of quantum states namely the 

phase space description. 

 

 

1.3 Discrete Wigner Function (DWF) and Discrete Phase Space 

 

Generally, the measurement outcomes of a quantum system are described by a 

probability distribution. In the usual quantum mechanics formalism, such probability 

distributions are often restricted to either one based on position representation or on 

momentum representation. Apart from the conditions of the Heisenberg uncertainty 

principle, there is no real reason for such a restriction. It is in this context that 

Wigner Function was introduced by E.P. Wigner (1932) in defining a state in 

quantum mechanical system in the full phase space formalism. The Wigner function 

acts in some respect like a probability distribution, but it differs from a probability 

distribution in that it can take negative values (Gibbons et.al., 2004). Note that the 

original Wigner function employs continuous variables of position and momentum 

equivalent to an infinite dimensional Hilbert space description of states. In practice, 

often we would like to make simpler (partial) description of a quantum system and 

uses only a finite dimensional Hilbert space, particularly in the field of quantum 

information. It is then natural to ask whether a phase space description exists for such 

finite dimensional systems. The answer is in the affirmative as demonstrated by 

Wootters and earlier works in quantum optics. Instead of defining the function in 

continuous phase space, one develops the discrete version of phase space and hence 

define discrete Wigner function. In principal, the properties of discrete phase space 

are analogous to the continuous phase space. The discrete phase space is 
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mathematically constructs using Galois field or known as finite field. Thus, with 

finite set of elements, the phase space can be pictured by an array of N N×  points. 

The geometry is like that of the ordinary phase plane where momentum represents 

the vertical axis and position represents the horizontal axis.  

 

Intrigued by this development, it is interesting to see how far can the discrete phase 

space formalism be extended particularly beyond the examples have often been 

shown in the literature, and whether there are complications arising in the 

construction of higher dimensional discrete phase spaces. Throughout this research, 

the study has focused on explicit construction for three-qubit and two-qutrit systems. 

We have developed a program to compute the binary operations of the appropriate 

discrete field and have constructed accordingly a set of parallel lines (striations) in 

the discrete phase space for the 3-qubit and 2-qutrit systems that can lead to 

identifying the discrete Wigner function. 

 

1.4 Objectives 

 

The objectives of this study can be succintly posed as: 

• To identify the discrete fields for the 3-qubit and 2-qutrit systems and 

develop a Mathematica program to compute their binary operations.                                           

• To form the set of striations in the discrete phase space for 3-qubit and 2-

qutrit systems. 

 



 

 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Wigner function distribution is used to define the arbitrary state in quantum system. 

The function has the property that can determine the position and momentum 

variables of the state in quantum system simultaneously. Many researchers have 

proposed to generalize Wigner function in discrete phase space in order to determine 

the arbitrary state in finite dimensional quantum system. 

 

In 1974, Buot apply a discrete Weyl transform to one-dimensional periodic lattice of 

N , where N  is odd number. This application directly will generate a Wigner 

function defined on a phase space with N N×  array of points. 

 

Hannay and Berry in 1980 has directly adapted the continuous Wigner function to a 

periodic lattice. With that adaption, they defined discrete Wigner function on a  

2 2N N×  phase space. 

 

The discrete phase space represented by 2 2N N×  array of points for a system with 

N  orthogonal states is the most famous version to define discrete Wigner function. 
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2.2 Discrete Phase Space Based on Finite Fields 

 

A Wigner-function formulation of finite-state quantum was proposed by Wootters 

(1987). He presented the Wigner function in discrete phase space, where the phase 

space is a two-dimensional vector space over the finite field with N (must be a prime 

number) elements. The space is like ordinary Cartesian plane that can be pictured as 

an N N×  array of point. Each point in phase space was labeled by a pair 

coordinates, each taking values in finite field (from 0  to 1N − ). He specified that, 

the Wigner function in discrete system must be closely analogous as continuous 

Wigner function. Therefore, he applied the basic laws of quantum mechanics to 

transform the function from the continuous to discrete system. 

 

 

2.3  Qubits in Discrete Phase Space 

 

The initial idea to describe 2-level states of quantum system using Wigner function 

was proposed by Feynman (1982). This idea correlated well with the idea of a qubit 

system, where a qubit is a unit of quantum computation and quantum information 

that has 2-level state of quantum system. Wootters (2003) investigate Feynman 

idea’s and extend it to any number of qubit system. He proposed to develop the 

phase space based on the finite field with2n  elements. The discrete phase space that 

represented by 2 2n n×   array of points will perform as a medium to define discrete 

Wigner function. Besides that, this discrete Wigner function can act as a real function 

to define a quantum state of a system of n qubits in the phase space. 
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Later, Gibbons et al. (2004) describe the construction of discrete phase space of two-

qubits system technically and proposed the notion of lines in this discrete space. 

They have used as much as the property in continuous phase space to apply in the 

discrete phase space that they proposed. They also investigated the physical 

interpretation in the discrete phase where they applied a pure quantum state to each 

line in space. This condition they called as quantum net. They notice perfect 

correlation of the sets parallel lines in phase space with a complete set of mutually 

unbiased bases. They defined the construction of the phase space such that it will 

generate complete sets of MUBs. 

 

However, to date there are still having no evidence that discrete phase space has the 

same property with respect to the law of physics like continuous phase does. But the 

description of discrete phase space has been found useful in a variety of problem in 

quantum information. 

 

 

2.4 Outlook & Motivation 

 

None from the above literature highlighted or explicitly discuss the construction of 

discrete phase space of 3-qubit and 2-qutrit systems as the construction gets more 

difficult. It is also interesting to note that these systems will have direct usage in 

quantum information; for example a GHZ state is a 3-qubit state and qutrit 

entanglement requires at least two qutrits. In this research, we developed a program 

by using Mathematica software, to solve two binary operations in order to develop a 

discrete phase space for both systems.  With the computation of the linear equation 
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aq bp c+ = , we identify the set of parallel lines in the discrete phase space for both 

systems also. 

  

 



CHAPTER 3 
 

THEORY 
 
 

 
 
3.1 Qubit and Qutrit 

 

Earlier in Chapter 1, we have introduced qubit as the state of a two-level quantum 

system, which is the simplest. The next simplest system will be a three-level system 

whose states we called qutrits. Similar to the qubit, a qutrit is analogous to the unit of 

classical information, “trit”. The basis states of a qutrit is denoted by0 , 1  and 2 . The 

general qutrit state is a superposition of these three basis states given by  

 

0 1 2a b cλ = + + , , ,a b c ∈ℂ  

 

One could generalize this further to a d-level system, where the states are generally 

known as qudits but our interest here will be limited to qubits and qutrits. We would 

however consider higher-dimensional systems by combining a few qubits or qutrits. The 

total Hilbert space will be the tensor product of the Hilbert spaces of the individual qubit 

or qutrit. For example, a two-qubit system will be described by a tensor product of two 

two-dimensional Hilbert spaces giving a total Hilbert space of dimension four. 

 

While states of (multiple) qubit(s) or qutrit(s) can be a superposition of the basis states, 

on measurement, only one of the basis states will be the output. The measurement values 

corresponding to eigenvalues of the basis states thus they pose as the candidate points of 

(3.1.1) 
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the discrete phase space we are looking for. Note however that these points are required 

to obey some algebraic properties just like the points of the usual phase space do. 

 

The specific mathematical concept needed to construct the discrete phase space is that of 

Galois field or finite field. This concept required the number of the elements in finite 

field is a power of a prime. The dimension of the state space are thus given in this form, 

2nN =  and 3nN = , where n  represents the number of qubits and qutrits while 2  and 3 

are prime numbers showing the system levels. Besides that, n-qubit and n-qutrit are able 

to represent 2n  and 3n  different basis states simultaneously. To systematically introduce 

these finite fields, we begin with the mathematical concept of rings, in which finite field 

share their same properties albeit with a further algebraic structure.  

 

 

3.2 Rings 

 

Ring is an algebraic structure with several operations with importance in introducing 

finite fields. The set of integers is the most familiar example that shares the same 

properties used in ring. Hence, the set all integers is a ring with usual definition of 

addition and multiplication. The following definition will formally define a ring. 

 

Definition: The set R together with two binary operations +  and ⋅  (called addition and 

multiplication) is called a ring if the following axioms hold for every selection of 

elements , ,a b c R∈  (McCoy & Janusz, 2001). 
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P1: commutative law of addition 

a b b a+ = +      

P2: associative law of addition 

( ) ( )a b c a b c+ + = + +    

P3: Existence of a zero  

There is an element 0R∈  such that 0a a+ =  for every a R∈  

P4: Existence of additive inverses 

 If a R∈  there exists an x R∈  such that 0a x+ =  

P5: Associative law of multiplication 

 ( ) ( )ab c a bc=  

P6: Distributive laws  

 ( )a b c ab ac+ = +  and ( )b c a ba ca+ = +  

On top of these, we could also have the following properties which are also obeyed by 

the ring of integers. 

 

P7: Commutative law of multiplication 

 ab ba=  

P8: Existence is an identity for multiplication 

 There is an element e R∈  such that ea ae a= =  for all a R∈  

 

However, the set R is not required to have either of the properties P7 and P8 to be a ring. 

Without these two properties the set R can still be identified as a ring, but later these two 
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properties are important in determining the concept of a field. A ring R that has the 

multiplication property P7  is called a commutative ring. 

 

 

3.3 Finite Field/Galois Field 

 

Generally, a commutative ring F  is said to be a field if every nonzero element of F  has 

a multiplicative inverse inF . Like a ring, a set F of field is closed under the addition 

and multiplication operations and it also satisfies the axioms P1 – P8    

 

The familiar examples of a field is the field of real numbers ℝ , the field of rational 

numbers ℚ , and the field of complex numbers ℂ . These types of field have infinite 

number of elements. However, it is possible for a field to have a finite number of 

elements and such a field is called finite field. 

 

In honor of the founder of finite field theory Évariste Galois, the finite field also called 

Galois field. There exists a finite field F  of order N  if and only if p is a prime power, 

nN p=  where prime number p  called the characteristic of F  and n  is a positive 

integer. If 1n = , then F  is called a prime field. If 1n > , thenF is called an extension 

field. The order of a finite field is the number of elements in that field. 

 

For any prime powerN , there is essentially only one finite field of order N , which 

means that any two finite fields of order N  are structurally the same except that the 


