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Examination Timetabling Problem (ETTP) is an NP-hard typical optimization problem 

faced by institutions and universities across the world. This nature leads to heuristic 

methods cover a large branch of researches in this area. On the other hand, the problem 

varies from one institution to another, depending on the size, structure and constraints of 

that institution. Therefore generality of the proposed methods is one of the major goals 

in solving timetabling problem nowadays. These methods are trying to keep generality 

while adding to factors of these methods. Hyperheuristic is one of these approaches 

which make the basis of this thesis.  

 

In heuristic approaches getting stuck in local optimum is one of the propounded 

problems from early days. The main cause for the local optimal problem is that heuristic 

algorithms either focus on exploration (global improvement) rather than exploitation 

(local improvement) or vice versa.  
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The proposal to address the mentioned problem in this thesis is an extension to 

constructive Graph-based Hyperheuristic (GHH) algorithm presented in (Burke et al., 

2007), where the researchers have not considered a dynamic hybridization of graph-

based heuristics in their framework such that each low level heuristic is applied for 

scheduling fixed number of examinations for construction a solution (timetable) at each 

step. On the other hand, no supervision exists on manner of current heuristic on the 

solution such that it isn‟t clear scheduling of each exam based on order of current 

heuristic leads to improving or destroying the solution. By this way there is no legal 

control between exploration and exploitation of the search space in order to avoid 

getting stuck in local optimum. This study aims to use a dynamic mechanism so that 

algorithm makes a balance between exploration and exploitation of graph-based 

heuristic search space while keep the generality of the hyperheuristic approach.  

 

In this study a new dynamic algorithm called Tolerable Graph-based Hyperheuristic 

(TGHH) is proposed with a new partial evaluation function and two embedded 

parameters; so that new partial evaluation function is designed to evaluate partial 

solution at each step in order to guide algorithm scheduling per exam with current 

heuristic is improving or destroying the solution. Good Tolerance parameter is 

introduced to control exploitation of heuristic search space and Bad Tolerance to 

balance exploration based on partial evaluation function value at each step. 

 

The proposed algorithm has been tested on eight of benchmark datasets introduced by 

(Carter, Laporte and Lee, 1996). Different pair permutations of Tolerance parameters 
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have been tuned in the algorithm and best pair is determined. The obtained results on 

five of the datasets are better than reported results by GHH presented in (Burke et al., 

2007) and are in the range of published results by GHH on remained datasets. Obtaining 

solutions with less cost function implies previous results of other approaches were 

getting stuck in local optimum because now a solution has been achieved in another 

search space area with less violation of soft constraint that is closer to global optimum 

rather than previous results. 
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Masalah penjadualan peperiksaan (ETTP) adalah masalah pengoptimuman NP-Hard 

tipikal yang dihadapi oleh institusi dan universiti seluruh dunia. Situasi ini mencetuskan 

kaedah heuristik yang merangkumi cabang yang luas kepada masalah ini. Selain itu 

masaalah penjadualan ini berbeza  setiap institusi bergantung kepada saiz, struktur dan 

kekangan. Oleh itu ciri-ciri generaliti kaedah yang ditawarkan adalah merupakan 

matlamat utama kepada penyelesaian masalah penjadualan hari ini. Metod-metod ini 

cuba mengekalkan generaliti disebalik penambahan faktor-faktor ke atasnya. 

Hiperheuristik adalah salah satu kaedah sebegini yang menjadi asas utama tesis ini. 

 

Terperangkap dalam optima awalan merupakan masalah utama pendekatan heuristik 

semenjak ianya diperkenalkan. Punca utamanya kerana algoritma berasaskan tempatan 

samada memokus kepada penerokaan (peningkatan global) atau  pemecahan 

(peningkatan local) atau sebaliknya.  
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Proposal terhadap masalah di atas dalam tesis ini adalah lanjutan daripada Constructive 

Graph-based Hypherheuristc Framework oleh (Burke et al., 2007), dimana penyelidik 

tidak melihat kepada kacukan dinamik antara heuristik berasaskan graf dalam rangka 

kerja mereka seperti setiap heuristik aras bawah digunakan untuk menjadual bilangan 

peperiksaan tertentu bagi membina penyelesaian di setiap peringkat. Di sebahagian lain 

pula, tiada kewujudan kawalan kepada heuristik semasa atas penyelesaian yang 

mencetuskan peningkatan atau penghapusan penyelesaian. Melalui cara ini tiada 

kawalan sah antara penerokaan dan pemecahan ruang carian bagi mengelakkan 

terperangkap dalam optima awalan. Kajian ini bermatlamat menggunakan mekanisma 

dinamik yang membolehkan algoritma membuat imbangan antara penerokaan dan 

pemecahan ruang carian berasaskan graf  semasa mengekalkan genelaliti kaedah 

hiperheuristik. 

 

Dalam kajian ini algoritma dinamik baru dipanggil Algoritma Ketahanan Hiperheuristik 

berasaskan Graf (TGHH) diperkenalkan dengan satu fungsi penilaian separa dan dua 

umpukan parameter; jadi fungsi penilaian separa ini direkabentuk untuk menilai 

penyelesaian separa pada setiap peringkat bagi memandu algoritma penjadualan dengan 

heuristik semasa agar penyelesaian dipertingkatkan atau dihapuskan. Parameter 

Ketahanan baik diperkenalkan untuk mengawal pemecahan ruang carian heuristik dan 

ketahanan buruk pula mengimbang penerokaan berasaskan nilai fungsi penilaian separa 

di setiap peringkat. 
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Algoritma yang diperkenalkan telah diuji kepada lapan set data yang diperkenalkan 

(Carter, Laporte dan Lee, 1996). Pasangan permutasi kepada parameter-parameter 

kebolehtahanan ditala dalam algoritma dan keputusannya dibincangkan. Keputusan yang 

dilaporkan adalah dalam julat yang hampir sama diperolehi oleh algoritma terkini dan 

sebahagian keputusan dari set data adalah lebih baik dari yang dihasilkan oleh GHH 

seperti dilaporkan dalam (Burke et al., 2007) dan dalam julat keputusan oleh GHH bagi 

set data yang selebihnya. Dapatan dari penyelesaian ini dengan fungsi kos yang rendah 

menunjukan keputusan dari kaedah sebelum telah tersekat dalam masalah optima 

setempat kerana tiada penyelesaian dicapai dalam ruang carian yang lain dengan 

pelanggaran kekangan rendah yang kecil menghampiri optima global. 
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CHAPTER 1 

1                                                  INTRODUCTION 

 

1.1 Background 

 

Examination timetabling problem (ETTP) as a subclass of educational timetabling is one 

the most famous problem which has taken a lot of efforts by researchers to solve it until 

now. At least once a year, schools and universities have to solve an instance of the 

timetabling problem whose manual solution requires a lot of manpower. It would be 

desirable to have a program that schedules courses and/or exams instead of a human.  

 

On the other hand the problem varies from one institution to another depending on the 

size, constraints, type of the problem and their objectives. It can be inferred that the 

solution which is appropriate for one institution, may not work at others. Therefore the 

generality of the proposed methods is one of the major goals in solving timetabling 

problem.  

 

On the other hand, many real-life problems lead naturally to combinatorial search which 

is a very computationally intensive task. Unfortunately, no general method exists for 

solving this kind of problems efficiently. The Automated construction of Examination 

timetables is a typical combinatorial optimization known as NP (Nondeterministic 

Polynomial-time) hard problem due to large-scale computationally, multi-constrained 

and belonging to combinatorial optimization. There is no linear exact method to solve 

the problems which fall under this category of combinatorial optimization. Of course 

http://en.wikipedia.org/wiki/Polynomial-time
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constructing of an initial solution (timetable) is not problem, the issue is improvement of 

solutions and obtaining an optimum solution.  

 

Due to NP-hard nature of ETTP and more generally educational timetabling problem, 

the heuristic methods cover a large branch of researches in this area. In computer 

science, a heuristic algorithm or simply a heuristic is an algorithm that ignores whether 

the solution to the problem can be proven to be correct, but which usually produces a 

good solution or solves a simpler problem that contains or intersects with the solution of 

the more complex problem. Heuristics are typically used when there is no known way to 

find an optimal solution, or when it is desirable to give up finding the optimal solution 

for an improvement in run time (Pearl and Judea, 1984). 

 

In search algorithms two conflicting aspects are termed `exploration' and `exploitation'. 

Exploration is an algorithm's ability to search broadly through the problem's search 

space and exploitation is an algorithm's ability to search locally around good solutions 

that have been found previously. Proper control of global exploration and local 

exploitation is crucial in heuristic approaches in order to avoid local optimum. 

 

The basic heuristic method is Hill Climbing (HC) or iterative improvement which 

repeatedly moves to a solution better than the current one until it finds a local optimum 

(i.e. a solution which is better than all others in its neighborhood). Since only improving 

moves are accepted, hill climbing tends to get stuck fairly in local optimum, which may 

be much worse than the global optimum. To overcome this, modern heuristics (or 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Algorithm
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metaheuristics) are equipped with some way of getting away local optima. The idea is to 

accept a solution even if it is worse than the current one in order to find better solutions 

later in the search process. Of course the local optimum is not solved completely yet. 

The main cause for the local optimal problem in metaheuristics is that algorithms don‟t 

make a harmony on exploitation (local improvement) and exploration (global 

improvement) in search space of solutions. 

 

Generally metaheuristic approaches generate good results. They are suitable when the 

goal is generating high quality solutions. On the other hand, they are problem-specific 

and tailor-made nature approaches so that if they are applied to another problem or even 

another instance of the same problem, lots of effort will be demanded for changing 

programming and implementation due to match them. Therefore applying of approaches 

which work at a higher level of generality in different kinds of problem will be justified. 

 

The new generation of heuristic methods is hyperheuristic approaches introduced by 

(Burke et al., 2003). The development of hyper-heuristics is motivated by the goal of 

raising level of generality for automatically solving a range of problems. 

 

Hyper-heuristics can be defined to be heuristics which choose between heuristics in 

order to solve a given optimization problem at a higher level. It means that they don‟t 

optimize solutions directly. They work by way of an operator (a low level heuristic). 

This places a hyper-heuristic at a higher level of abstraction and generality rather than 

most current studies of metaheuristics. A number of hyper-heuristics have been 
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developed over the past few years (Cowling, Kendall and Soubeiga, 2000; Ayob and 

Kendall, 2003; Burke et al., 2007). 

 

Figure 1.1 indicates the general hyper-heuristic framework introduced by (Soubeiga, 

2003). Hyper-heuristics can be considered as black box systems, which take the problem 

instance and several low level heuristics as methods which can produce the result 

independent of the problem characteristics.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: General Hyperheuristic Framework 

 

In this concept, hyper-heuristics use only non problem-specific data provided by each 

low level heuristic in order to select and apply them to candidate solution (Burke et al., 

2003). 
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