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The main problem for Supervised Multi-layer Neural Network (SMNN) model lies in
finding the suitable weights during training in order to improve training time as well as
achieve higher accuracy. The important issue in the training process of the existing SMNN
model is initialization of the weights. However, this process is random and creates the

paradox of low accuracy and high training time.

In this study, a Multi-layer Feed Forward Neural Network (MFFNN) model for
classification problem is proposed. It consists of a new preprocessing technique which
combines data preprocessing and pre-training that offer a number of advantages; training
cycle, gradient of mean square error function, and updating weights are not needed in this

model. The proposed technique is Weight Linear Analysis (WLA) based on mathematical,



statistical and physical principles for generating real weights by using input values. WLA
applies global mean and vectors torque formula to solve the problem. We perform data
preprocessing for generating normalized input values and then applying them by a pre-
training technique in order to obtain the real weights. The normalized input values and real
weights are applied to the MFFNN model in one epoch without training cycle. In MFFNN
model, thresholds of training set and test set are computed by using input values and real
weights. In training set each instance has one special threshold and class label. In test set
the threshold of each instance will be compared with the range of thresholds of training set

and the class label of each instance will be predicted.

To evaluate the performance of the proposed MFFNN model, a series of experiment on
XOR problem and two datasets, which are SPECT Heart and SPECTF Heart was
implemented. As quoted by literature, these two datasets are difficult for classification and
most of the conventional methods do not process well on these datasets. For experiment
result, Standard Back Propagation Network (BPN) as SMNN model is considered. SBPN
is changed to MFFNN model by using WLA technique. Accuracy of MFFNN model using
WLA is compared with several strong classification models and SBPN using best and
latest pre-training techniques. Our results, however, show that the proposed model has
been given high accuracy in one epoch without training cycle. The accuracies of 94% for

SPECTF Heart and 92% for SPECT Heart which are the best results.
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Masalah utama bagi Rangkaian Neural Multi-aras Terselia (SMNN) adalah dalam mencari
pemberat yang bersesuaian semasa latihan, bagi meningkatkan masa latihan dan mencapai
ketepatan yang tinggi. Isu terpenting dalam latihan SMNN adalah mencari nilai awal
pemberat. Walau bagaimanapun, proses ini adalah rawak dan mencetus paradoks iaitu

ketepatan yang rendah dan masa latihan yang tinggi.

Dalam kajian ini, sebuah model Rangkaian Neural Multi-aras Suap Hadapan untuk
masalah pengkelasan adalah dicadangkan. lanya mengandungi teknik baru pra-
pemprosesan yang menggabungkan pra-pemprosesan data dan pra-latihan yang
menawarkan beberapa kebaikan; kitaran latihan, fungsi kecerunan ralat min kuasa dua, dan
pengemaskinian pemberat adalah tidak lagi diperlukan. Teknik yang telah dicadangkan

ialah Weight Linear Analysis (WLA) yang berdasarkan prinsip-prinsip matematik, statistik



dan fizik bagi menjana pemberat sebenar dengan menggunakan nilai-nilai input. WLA
menggunakan purata global dan formula vectors torque untuk menyelesaikan masalah
tersebut. Kami melaksanakan pra-pemprosesan untuk menjana nilai input ternormal yang
kemudiannya digunakan oleh teknik pra-latihan dalam tujuan untuk mendapatkan
pemberat sebenar. Nilai-nilai input ternormal dan pemberat sebenar digunakan pada model
MFFNN dalam satu epoksi tanpa kitaran latihan. Dalam model MFFNN, nilai ambang bagi
set latihan dan set ujian dikira dengan menggunakan nilai input dan pemberat sebenar.
Dalam set latihan, setiap instan mempunyai satu nilai ambang dan label kelas tersendiri.
Dalam set ujian, nilai ambang bagi setiap instan akan dibandingkan dengan julat nilai

ambang bagi set latihan dan label kelas bagi setiap instan akan diramalkan.

Bagi menilai prestasi model MFFNN yang telah dicadangkan, beberapa siri eksperimen ke
atas masalah XOR dan dua set data, iaitu SPECT Heart dan SPECTF Heart telah
dilaksanakan. Sebagaimana dinyatakan dalam kajian literatur, kedua-dua set data ini adalah
sukar bagi pengkelasan dan kaedah konvensional tidak mendapat hasil pemprosesan yang
baik daripada kedua-dua set data ini. Bagi hasil eksperimen, Standard Back Propagation
Network (BPN) sebagai model SMNN adalah di ambil kira. SBPN ditukarkan kepada
model MFFNN dengan menggunakan teknik WLA. Ketepatan model MFFNN
menggunakan WLA dibandingkan dengan beberapa model pengkelasan yang baik dan
model SBPN menggunakan teknik-teknik pra-latihan yang terbaik dan terkini. Hasil kami,
walau bagaimanapun, menunjukkan model yang dicadangkan telah memberi ketepatan
yang tinggi dalam satu epoksi tanpa kitaran latihan. Ketepatannya adalah 94% untuk

SPECTF Heart dan 92% untuk SPECT Heart iaitu hasil yang terbaik.
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CHAPTER 1

INTRODUCTION

1.1 Background

Neural networks are suitable for extracting rules, quantitative evaluation of
these rules, clustering, self-organization, classification, regression feature evaluation, and
dimensionality reduction (Han and Kamber, 2001; Mitra et al., 2002). Back-propagation
network (BPN) is the best example of a parametric method for training supervised multi-
layer perception neural network for classification. BPN has the ability to learn biases and
weights (Han and Kamber, 2001). It is a powerful method to control or classify systems
that use data to adjust the network weights and thresholds for minimizing the error in its
predictions on the training set. Learning in BPN employs gradient-based optimization
method in two basic steps: to calculate the gradient of error function and to compute output
by the gradient. Also, BPN compares each output value with its sigmoid function in the
input forward and computes its error in BPN backward. This is considerably slow because
biases and weights have to be updated in each epoch of learning (Craven and Shavlik,

1997).

Learning is the important property of neural networks. Neural networks are able to
dynamically learn types of input information based on their weights and properties. During

learning, the weight of each value in hidden layers will be considered. As the domain



becomes smaller and smaller, suitable weights will be obtained through this series of
repeated trial and errors after several epochs. Suitable data pre-processing techniques are
necessary to find input values while pre-training techniques to find desirable weights that
in turn will reduce the training process. This is the essence of Supervised Multi-layer
Neural Network (SMNN). Combination of data pre-processing and pre-training in SMNN
results in worthy input values, desirable process, and higher performance in both speed and

accuracy.

1.2 Problem Statement

In classification problem, Supervised Multi-layer Neural Network (SMNN) model such as
Back-propagation Network (BPN) obtain its data by learning from the real-world
environment. It also dynamically recognizes the type of input information through their
weights and properties (Han and Kamber, 2001). Learning of SMNN models such as BPN
is considerably slow because biases and weights have to be updated in each epoch during
learning (Craven and Shavlik, 1997). Without pre-processing, the training for classification

may be very slow and may not even complete.

Pre-processing consists of additional steps applied to help improve the accuracy, speed,
and scalability during classification (Han and Kamber, 2001). Currently, data pre-
processing and pre-training are the contributing factors in developing efficient techniques
for fast SMNN processing at high accuracy and reduced training time (Van der Maaten et

al., 2008; Hinton and Salakhutdinov, 2006). Nonetheless, the improvement in performance



and results is not without cost. Finding the suitable input values and weights has become
critical to at least maintain the same processing time and high accuracy results (Demuth et
al., 2007; Andonie and Kovalerchuk, 2004; Jolliffe, 2002; Han and Kamber, 2001).
Suitable input values and weights are extremely necessary because neural network lies on
the foundation of “garbage-in, garbage-out”. Kim and Ra (1991) introduced a minimum
bound for initialization of weight and Fernandez-Redondo and Hernandez-Espinosa
(2001) proposed upper bound 0.1 plus lower bound. Using random number for weight
initialization is disadvantage of this technique. Drago and Ridella (1992) introduced a
method called Statistically Controlled Activation Weight Initialization (SCAWI). They
used the meaning of paralyzed neuron percentage (PNP) and conceptualized on testing the
number of times a neuron lies in a completed situation with acceptable error. Fernandez-
Redondo and Hernandez-Espinosa (2000) and Funahash (1989) improved this method.
However, SCAWI is also using random numbers; hence it is critical during training. Li et
al., (1993) explained Delta Pre-Training (DPT). The core of DPT is using Delta rule
instead of using random numbers, after this phase, SMNN model training process is carried
out to complete network training. The weights are initialized with zero values by using
Delta rule. Disadvantage of this technique is the initialization zero value that is not based
on desired and real weights. Shimodaira (1994) introduced one pre-training technique
based on geometrical considerations. Disadvantage of this technique the same DPT
technique is the initialization zero value. Ho-Sub et al., (1995) classified the input values in
three groups, whereby weights of the most important input are initialized with [0.5, 1],
weights with the least important input are initialized with [0, 0.5], and the rest are
initialized with [0, 1]. Weight initialization is at random yet. Keeni et al. (1999) introduced

the idea for initializing weight range within the domain of [-0.77; 0.77]. The experiment



achieved best mean performance for multi-layer perceptrons with only one hidden layer.
Already, Weight initialization is at random. Zhang et al. (2004) and Fernandez-Redondo
and Hernandez-Espinosa (2001) discussed several initial weighting methods in Min and
Max, initial weights considered in domain of (-a, +a) are computed. Currently, Min and
Max technique using standard BPN has an initial random weight in domain [-0.05, 0.05]
(Fernandez-Redondo and Hernandez-Espinosa, 2001). Nonetheless, the disadvantage of
Min and Max method is the initialization of random numbers that are critical during
training. Latest and strong pre-training technique was introduced by Van der Maaten et al.,
(2008); Hinton and Salakhutdinov, (2006); DeMers and Cottrell, (1993) which is multi-
layer auto-encoder networks. The feed forward neural network trains to minimize the mean
squared error between the input and output by using sigmoid function. High-dimensional
matrix may be reduced into low-dimensional matrix through extraction of node values in
the middle hidden layer. In addition, auto-encoder/auto-Associative neural networks are
neural networks that are trained to recall their inputs. When the neural network uses linear
neuron and activation functions, auto-encoder processes are similar to PCA (Lanckriet et
al., 2004). BPN advances global fine-tuning phase through auto-encoder to fine-tune the
weights for optimization. The main disadvantages of this method are using random number
for weight initialization and due to the high number of multi-layer auto-encoders

connections in BPN training process, resulting in slow performance.

Therefore, current pre-training techniques apply random values for initial weights to

reduce the training process (Van der Maaten et al., 2008; DeMers and Cottrell, 1993) but



this approach resulted in a contradicting paradox between the accuracy result and training

time (Zhang et al., 2004; Fernandez-Redondo and Hernandez-Espinosa, 2001).

In this study, a Multi-layer Feed Forward Neural Network (MFFNN) model for
classification problem is proposed. It consists of a new preprocessing technique, called
Weight Linear Analysis (WLA) which combines data preprocessing and pre-training that
offer a number of advantages; training cycle, gradient of mean square error function, and
updating weights are not needed in this model. WLA applies global mean and vectors
torque formula to solve the problem. We perform data preprocessing for generating
normalized input values and then applying them by new pre-training technique in order to
obtain the real weights. The normalized input values and real weights are applied to the

MFFNN model in one epoch without training cycle.

1.3  Objectives of research

The objectives of this research are as follows:

« To propose a Multi-layer Feed Forward Neural Network (MFFNN) model that

increase classification accuracy and improve training time in a single epoch

classification.

« To propose a new pre-training technique that combines with data pre-processing to

generate real weights through the use of normalized input values.



1.4 Scope of research

This research focuses on combination of data pre-processing and pre-training techniques
using weights linear analysis to increase classification accuracy and to reduce training time
in the Multi-layer Feed Forward Neural Network (MFFNN) model. For experimental
result, Standard Back Propagation Network is considered as Multi-layer feed forward
models. All experiments are carried out under the domain of Exclusive-OR (XOR)
problem using two datasets, which are SPECT Heart and SPECTF Heart. Training is
performed through F-measure function with 10 folds of testset and is compared with
results from several strong models. These datasets are suitable as benchmarking in multi-
layer networks based on UCI Repository of Machine Learning and comparison (Kim and

Zhang, 2007).

1.5 Research methodology

The research follows combination of data pre-processing and pre-training techniques to
reduce training process in Multi-layer Feed Forward Neural Network (MFFNN) model at
high speed and accuracy. The techniques apply mathematical, statistical, and physical
principles for generating real weights by using normalized input values, which are

essentially the output of data pre-processing phase.

The proposed technique, called Weights Linear Analysis (WLA), addresses the problem in

two phases. During the first phase, WLA considers data pre-processing through vertical



evaluation on input values matrix for generating normalized input values. The output of the
first phase, which are normalized input values, are then used to compute weights of
attributes. The proposed MFFNN, in turn, uses the output of WLA, which are normalized
values and weights to classify the dataset. This approach resulted in a reduced training time
because learning does not require computing mean square errors and updating weights in

any training cycle.

Currently, pre-training is using multilayer encoders as feed-forward neural networks with
odd number of hidden layers Van der Maaten et al. (2008) and DeMers and Cottrell
(1993). This pre-training method uses initial random weights as opposed to the real
weights used in the proposed method. As for the experimental setup, an Exclusive-OR
(XOR) problem with two sets of dataset is chosen to illustrate the strength of the proposed
technique. The first dataset, SPECTF Heart is a multivariate integer dataset while the

second dataset, SPECT Heart is a multivariate categorical-binary dataset.

1.6 Contribution of research

Major contributions described in this thesis are listed below:

« Multi-layer Feed Forward Neural Network (MFFNN) model for single epoch

classification, which does not require any training cycle, computation of gradient

mean square error function, and updating weights. The approach uses Weights

Linear Analysis (WLA) to combine data pre-processing and pre-training.



