PATHOGENICITY OF *PASTEURELLA MULTOCIDA* SEROTYPES A: 3, D: 1 AND D: 3 IN RABBITS

MUTHAFAR HUSSAIN AL-HADDAWI

FPV 1999 9
PATHOGENICITY OF Pasteurella multocida SEROTYPES A:3, D:1 AND D:3 IN RABBITS

MUTHAFAR HUSSAIN AL-HADDAWI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA
1999
PATHOGENICITY OF *Pasteurella multocida* SEROTYPES A:3, D:1 AND D:3 IN RABBITS

BY

MUTHAFAH HUSSAIN AL-HADDAWI

Thesis Submitted in Fulfilment of the Requirements for the degree of Doctor of Philosophy in the Faculty of Veterinary Medicine
Universiti Putra Malaysia
August 1999
DEDICATION

TO THE MEMORY OF MY FATHER

TO MY MOTHER, AUNTIE NAZIK AND UNCLE DR. RAJIH AL-HADDAWI FOR THEIR MORAL SUPPORT AND ENCOURAGEMENT.
ACKNOWLEDGEMENTS

All praise to Almighty Allah, the Merciful and the Benevolent. Had it not been due to His will and favour, the completion of this study would not have been possible.

I would like to express my sincere gratefulness and appreciation to my supervisor, Dr. Jasni Sabri, who has devoted much of his time for invaluable guidance, advice, supervision, and support throughout the course of this study.

I wish to express my sincere gratitude to the Dean of the Faculty of Veterinary Medicine who is also my co-supervisor, Professor Dr. Sheikh Omar Abdul Rahman for his invaluable advice, support and continuous encouragement towards the completion of this work.

Sincere thanks are also due to my other co-supervisors, Associate Professor Dr. Mohamad Zamri Saad, Dr. Abdul Rahim Mualib and Dr. Son Radu who have provided advice and helpful discussion that have enlightened and improved this study.

I would like to express my gratitude to Professor Dr. Abd Rani Bahaman and Dr. Daud Ahmad Israf Ali who have provided facilities in their laboratories during
the course of this study. I wish to thank Dr. Ungku Chulan Ungku Mohsin for his assistance and advice during the course of my study and Dr. Noordin Mohamad Mustapha for his resourceful comments and suggestions to provide a thesis of highly quality.

I would also like to express my heartfelt gratitude to Dr. T. G. Wijewardana from the Veterinary Research Institute, Sri Lanka for her assistance in serotyping the isolates.

I would like to thank Dr. Maria E. Klut from the Pulmonary Research Laboratory, University of British Colombia, Canada, Dr. Richard A. Nunamaker and Dr. Scott Lonning from USDA, Agricultural Service, USA for their helpful advice and constructive suggestions in the Electron Microscopy. I am also indebted to Dr. D. J. Weilgama from the Faculty of Veterinary Medicine, University of Peradeniya, Sri Lanka for his kind assistance in RAPD technique.

I have also been very fortunate in receiving assistance from a number of my colleagues and friends. Many of them went out of their way to assist me and it would not be possible to name all of them. However, I would like to thank Puan Zunita Zakaria, Dr. Karim S. Ali, Mr. Mohad Ghrissi, Dr. Karim Alwan, Dr. Thamir Ahmed, Dr. Isam Mohamad Ali, Dr. Md Sabri Mohd. Yusoff, Dr. Mohd. Effendy Abd Wahid, Puan Hartina Khan, and Samuel Lihan.
I would like to thank the staff members of the post-mortem laboratory, Mr. Ghazali Md. Yusof, Mr. Noraziman Suliman and Mr. S. Apparao. I wish to thank Mr. Ho Oi Kuan, Ms Azilah Ab Jalil, and Puan Aminah Jusoh from the Electron Microscope Unit, Bioscience Institutes, UPM, for their kind assistance.

I am deeply indebted to Mr. Basri Kasim, Mr. Hajaraih Salamat, Mr. Mohd Noh Manaf, Mr. Mohd Jamil Samad and Mr. R. Kumar who were most helpful and generous with their time. I am very grateful to Mr. Zaid Othman, Mr. Fauzi Che Yusof and Mr. Mohd Isnain and to those who were involved either directly or indirectly in sharing their knowledge and skilled and assistance during this study.

Continuos moral supports and engorgement from my sister, brothers and brother in law Dr. Reyad Kamel during my study are deeply appreciated.

Grateful thanks are also conveyed to my supportive wife, Thouraya Ali Dragh and children Zeinab, Hussain and Ridah who have long put up with my late nights and weekends at the office so that I could complete this work.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii
LIST OF TABLES ... ix
LIST OF FIGURES .. xii
LIST OF PLATES .. xiii
ABSTRACT ... xxviii
ABSTRAK .. xxxi

CHAPTER

I INTRODUCTION .. 1

II LITERATURE REVIEW .. 5
 Pasteurella multocida .. 5
 Bacterial Isolation and Identification ... 6
 Isolation and Selective Media ... 6
 Identification ... 7
 Antigenic and Molecular Characteristics ... 9
 Serotyping System ... 9
 Molecular Characteristics .. 11
 Prevalence .. 13
 Antimicrobial Sensitivity ... 14
 Virulence Factors and Pathogenicity ... 15
 Clinical and Pathological Manifestations ... 18
 Upper Respiratory Tract Infections .. 19
 Lower Respiratory Tract Infections .. 22
 Non-Respiratory Tract Infections ... 24
 Pathogenesis ... 25
 Host Response .. 27
 Diagnosis ... 29
 Bacterial Isolation ... 29
 Serological Diagnosis .. 29
 Control and Treatment .. 31
 Barrier Housing to Prevent Exposure 31
 Resistant Breed ... 31
 Vaccination .. 32
 Prophylaxis with Antimicrobial ... 33
 Pasteurelosis in Malaysia ... 35

III ISOLATION, IDENTIFICATION AND SEROTYPING OF
 Pasteurella multocida FROM RABBITS
 Introduction .. 37
 Materials and Methods ... 37
 Bacterial Isolates ... 40
 Bacterial Isolation .. 40
VI PATHOGENICITY OF Pasteurella multocida SEROTYPES D:1 and D:3 IN HYドROCORTISONE-TREATED AND NON-TREATED RABBITS

Introduction .. 154
Materials and Methods ... 155

Animals ... 155
Pasteurella multocida Serotypes D:1 and D:3 Inocula ... 156
Detection of Dermonecrotic Toxin (DNT) ... 156
Experimental Design .. 157
Pathology .. 159

Results .. 159
Results of Experimental Infection with Serotype D:1 ... 159
Dermonecrotic Toxin Production .. 159
Clinical Signs .. 160
Bacterial Isolation ... 161
Gross Pathology ... 165
Histopathology ... 168

Results of Experimental Infection with Serotype D:3 .. 189
Dermonecrotic Toxin Production .. 189
Clinical Signs .. 189
Bacterial Isolation ... 192
Gross Pathology ... 193
Histopathology ... 197
Electron Microscopy ... 208
Scanning Electron Microscopy .. 208
Transmission Electron Microscopy .. 213
Discussion ... 232

VII IN VITRO STUDY OF Pasteurella multocida ADHESION TO TRACHEA, LUNG AND AORTA OF RABBITS

Introduction .. 245
Materials and Methods ... 247

Bacterial Strains ... 247
Capsule Staining .. 247
Haemagglutination Test ... 248
Detection of Dermonecrotic Toxin ... 249
Detection of Fimbriae ... 249
LIST OF TABLES

Table 3.1 Distribution of *Pasteurella multocida* Isolated from Healthy Rabbits and Diseased Rabbits (Rhinitis and Post-mortem Cases) According to age

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>73</td>
</tr>
<tr>
<td>4.5</td>
<td>74</td>
</tr>
<tr>
<td>4.6</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>92</td>
</tr>
<tr>
<td>5.4</td>
<td>93</td>
</tr>
</tbody>
</table>
5.5 *Pasteurella multocida* Isolation From Organs of Rabbits (Hydrocortisone Treated and Non-treated) Infected with *P. multocida* Type A:3

5.6 Types of Rhinitis in Infected Rabbits Among Groups

5.7 Distribution and Type of Lungs Lesions in Infected Rabbits Among groups

5.8 Gross and Histological Group Lesion Indices of Rabbits (Hydrocortisone-treated and Non-treated) Infected with *P. multocida* Serotype A:3

6.1 Body Weight (Kg) of Experimentally Infected Rabbits with *Pasteurella multocida* Type D:1 and Control Rabbits

6.2 Rectal Temperature of *Pasteurella multocida* Type D:1 Infected Rabbits Treated and Non-treated with Hydrocortisone and Control Rabbits

6.3 Isolation of *Pasteurella multocida* at Post-mortem from Different Organs of Rabbits Experimentally Infected with *P. multocida* Type D:1

6.4 A Summary of Pulmonary Lesions Produced in Rabbits Experimentally Infected with *Pasteurella multocida* Type D:1

6.5 Non-pulmonary Lesions Produced in Rabbits Experimentally Infected with *Pasteurella multocida* D:1

6.6 Rectal Temperature of *Pasteurella multocida* Type D:3 Infected Rabbits Treated and Non-treated with Hydrocortisone and Control Rabbits

6.7 Body Weight (Kg) of Experimentally Infected Rabbits with *Pasteurella multocida* Type D:3 and Control Rabbits

6.8 Isolation of *Pasteurella multocida* at Post-mortem from Different Organs of Rabbits Experimentally Infected with *P. multocida* Type D3

6.9 Pulmonary Lesions Produced in Rabbits Experimentally Infected with *Pasteurella multocida* Type D:3
6.10 Non-Pulmonary Lesions Produced in Rabbits Experimentally Infected with Pasteurella multocida D:3

7.1 Virulence Attributes of Three Different Pasteurella multocida Strains Isolated from Rabbits

7.2 Adherence of Different Serotypes (A:3 and D:1) of Pasteurella multocida to Rabbits Tracheal Explant at Different Post-inoculation Times Expressed as Mean

7.3 Adherence of Different Serotypes (A:3 and D:1) of Pasteurella multocida to Rabbits Lung Explant at Different Post-inoculation Times Expressed as Mean

7.4 Adherence of Different Serotypes (A:3 and D:1) of Pasteurella multocida to Rabbits Aorta Explant at Different Post-inoculation Times Expressed as Mean deviation
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Serum IgG responses in rabbits against P. multocida following experimental nasal infection with P. multocida</td>
</tr>
<tr>
<td>7.1</td>
<td>Adherence of Pasteurella multocida serotypes A:3 and D:1 to a rabbit tracheal explant at different post-inoculation time</td>
</tr>
<tr>
<td>7.2</td>
<td>Adherence of Pasteurella multocida serotypes A:3 and D:1 to a rabbit lung explant at different post-inoculation time</td>
</tr>
<tr>
<td>7.3</td>
<td>Adherence of Pasteurella multocida serotypes A:3 and D:1 to a rabbit aorta explant at different post-inoculation time</td>
</tr>
</tbody>
</table>
LIST OF PLATES

Plate 4.1 Agarose (0.7%) gel electrophoresis of plasmid DNA from *P. multocida* isolated from healthy and diseased rabbits. Plasmid molecular weights were determined by comparison with *Escherichia coli* V 517 marker plasmids of known molecular weights. Lanes 1 and 8 are molecular weight markers (in megadalton, Mda). Lanes 2-4 are of type A isolated from diseased rabbits. Lane 5 is of type A isolated from healthy rabbit. Lanes 6 and 7 are of type D isolated from diseased rabbits. .. 65

Plate 4.2 Protein profiles of various *Pasteurella multocida* isolates analysed by SDS-PAGE. Lane 1, low molecular weight marker kilodalton kDa); lanes 2-5 (type D); lanes 6-11 (type A); lane 12 (type D) and lane 13, high molecular weight marker (kDa) .. 67

Plate 4.3 Protein profiles of various *Pasteurella multocida* isolates type A analysed by SDS-PAGE. Lane 1, low molecular weight marker (kDa), and lane 13, high molecular weight marker (kDa) ... 67

Plate 4.4 Protein profiles of various *Pasteurella multocida* isolates type A analysed by SDS-PAGE. Lane 1, low molecular weight marker (kDa), and lane 13, high molecular weight marker (kDa) ... 68

Plate 4.5 Protein profiles of various *Pasteurella multocida* isolates analysed by SDS-PAGE. Lane 1, low molecular weight marker (kDa); lanes 2-3 (type D); lane 4 (type A); lane 5 (type D), and lane 6, high molecular weight marker (kDa) 68

Plate 4.6 Fingerprinting obtained by RAPD with primer 1: lane 1, molecular size markers, lambda DNA digested by *EcoR* I and *Hind* III. lanes 2 and 12; profile 1, lane 3; profile 2, lanes 4 and 11; profile 3, lane 5; profile 4, lane 6 and 13; profile 5, and lanes 7, 8, and 9; profile 6. Lane 10, molecular size marker 1 kb. ... 72

Plate 4.7 Plate 4.7: Fingerprinting obtained by RAPD with primer 2: lane 1, molecular size marker, lambda DNA digested by *EcoR* I and *Hind* III; the lanes from 2 to 17 represent the 15 different profiles. Lane 18, molecular weights size marker 1 kb......... 72

xiii
Plate 5.1 Photograph. Sagittal section of the head of a rabbit from Group 1 with rhinitis killed 14 days p.i. Mucopurulent exudate (arrow) is adhering to the nasal turbinate................................. 95

Plate 5.2 Photograph. Lung of a rabbit from Group 1 killed 14 days p.i. with large areas of consolidation in the left and right cardiac lobes and left apical lobe. Note also haemorrhages on the right and left apical and diaphragmatic lobes................................. 97

Plate 5.3 Photograph. Lung of a rabbit from Group 1 killed 21 days p.i. with consolidated areas on the right apical and cardiac lobes with yellowish white firm nodules................................. 97

Plate 5.4 Photograph. Liver of a rabbit from group 1 killed 14 days p.i.. Note the congested and swollen liver with multifocal yellowish white depressed areas on the surface................................. 99

Plate 5.5 Photograph. Liver of a rabbit from Group 2 killed 21 days p.i. with a large gray focal area of necrosis in one hepatic lobe....... 99

Plate 5.6 Photomicrograph. Nasal mucosa section of a rabbit from Group 1 killed 14 days p.i.. Congestion of blood vessels in lamina propria with deposition of eosinophilic material in the wall of blood vessels. Heterophils are infiltrating the lamina propria and the necrotic surface epithelium. H&E X 350......................... 101

Plate 5.7 Photomicrograph. Nasal mucosa section of a rabbit from Group 2 killed 21 days p.i.. Hyperplasia of goblet cells and infiltration of mononuclear cells in the lamina propria. H&E X 700............. 101

Plate 5.8 Photomicrograph. Nasal mucosa section of a rabbit from Group 2 killed 21 days p.i.. Ulceration of the surface epithelium and infiltration of mononuclear cells, predominantly macrophages, few lymphocytes and plasma cells with fibrosis in lamina propria. H&E X 180.. 102

Plate 5.9 Photomicrograph. Lung section of a rabbit from Group 1 killed 14 days p.i. Note fibrin deposition in the alveolar lumen with infiltration of heterophils, macrophages and plasma cells. H&E X 350.. 105

Plate 5.10 Photomicrograph. Lung section of a rabbit from Group 1 killed 21 days p.i.. Lung abscess surrounded by fibrous connective tissue infiltrated with mononuclear cells (predominantly macrophages and lymphocytes). H&E X 140......................... 105
Plate 5.11 Photomicrograph. Lung section of a rabbit from Group 2 killed 21 days p.i.. Thickening of alveolar septae and pleura due to infiltration of heterophils and proliferation of fibroblasts. H&E X 350

Plate 5.12 Photomicrograph. Lung section of a rabbit from Group 2 killed 21 days p.i.. Hyperplasia of bronchial associated lymphoid tissue with infiltration of macrophages in the alveolar and bronchial lumina. H&E X 170.

Plate 5-13 Photomicrograph. Liver section of a rabbit from Group 1 killed 14 days p.i.. Multifocal areas of necrosis with calcium deposition. Multinucleated giant cells surrounding the necrotic areas with degeneration of adjacent hepatocytes. H&E X 140...

Plate 5.14 Photomicrograph. Higher magnification of the previous section. Note necrosis of hepatocytes with calcium deposition. Multinucleated giant cells surrounding the necrotic areas with degeneration of adjacent hepatocytes. H&E X 350

Plate 5.15 Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 14 days p.i.. Note severe loss of cilia of the nasal epithelium and presence of free red blood cells. SEM. Bar 10 μm.

Plate 5.16 Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 21 days p.i.. Note severely damaged mucosa and infiltration of leukocytes. SEM. Bar 10 μm.

Plate 5.17 Electron micrograph. Nasal mucosa of a rabbit from Group 2 killed 14 days p.i.. Note hyperplasia of goblet cells and excessive secretion of mucus. SEM. Bar 10 μm.

Plate 5.18 Electron micrograph. Trachea of a rabbit from Group 1 killed 14 days p.i.. Excessive mucus secretion. SEM. Bar 10 μm.

Plate 5.19 Electron micrograph. Trachea of a rabbit from Group 1 killed 21 days p.i.. Note mucus secretion (arrows) and complete loss of cilia (arrow heads). SEM. Bar 10 μm.

Plate 5.20 Electron micrograph. Trachea of a rabbit from Group 2 killed 21 days p.i.. Note focal loss of cilia and secretion of mucus. SEM. Bar 100 μm.
Plate 5.21: Electron micrograph. Trachea of a rabbit from Group 3 killed 21 days p.i.. Normal ciliated epithelial cells with normal cilia.
SEM. Bar 10 μm.

Plate 5.22: Electron micrograph. Lung of a rabbit from Group 1 killed 14 days p.i.. Note the thickening of alveolar wall due to hyperplasia of pneumocytes and infiltration of leukocytes.
SEM. Bar 10 μm.

Plate 5.23: Electron micrograph. Lung of a rabbit from Group 2 killed 21 days p.i.. Note bacterial colony attached on the pleural surface with infiltration of leukocytes and free red blood cells.
SEM. Bar 10 μm.

Plate 5.24: Electron micrograph. Lung of a rabbit from Group 3 killed 14 days p.i.. Note normal thin alveolar wall (arrow head) and empty alveolar lumens.
SEM. Bar 10 μm.

Plate 5.25: Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 14 days p.i.. Loss of cilia, shortened microvilli (arrow head) and swelling of mitochondria (m), which has absence, disorganised or ballooned cristae (arrow). Note also the presence of opaque particles (op) in the mitochondrial matrix.
Lead citrate & uranyl acetate TEM X 10,500.

Plate 5.26: Electron micrograph. Nasal mucosa of a rabbit from Group 2 killed 14 days p.i.. Severely swollen epithelial cells with swollen mitochondria (m), dilated rough endoplasmic reticulum (ER), irregular nuclear membrane (arrow head) and distended nuclear space.
Lead citrate & uranyl acetate TEM X 7,500.

Plate 5.27: Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 14 days p.i.. Bacterial cell (arrow heads) within membrane bound vacuoles inside the cytoplasm of degenerated epithelial cell. Note that mitochondria closely adhered to these vacuoles.
Lead citrate & uranyl acetate TEM X 11,200.

Plate 5.28: Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 14 days p.i.. Note presence of balloon-like (B) structure on the lateral aspects of cilia containing a multilayered hemisphere structure.
Lead citrate & uranyl acetate TEM X 86,500.
Plate 5.29 Electron micrograph. Nasal mucosa of a rabbit from Group 2 killed 14 days p.i.. Note attachment (arrow) of the bacteria to the deformed cilia (dc). The bacterial outer membrane appeared fused to the membrane of the deformed cilia. Lead citrate & uranyl acetate TEM X 136,000........................... 122

Plate 5.30 Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 14 days p.i. Presence of bacteria (B) adjacent to the deformed microvilli. Lead citrate & uranyl acetate TEM X 133,000. ... 123

Plate 5.31 Electron micrograph: Nasal mucosa of a rabbit from Group 2 killed 14 days p.i.. Note degenerated epithelial cell with dilated rough endoplasmic reticulum (Er) and swelling of mitochondria (m) with loss of their crista. Note infiltration of heterophils (H) between the degenerated epithelial cell. Lead citrate & uranyl acetate TEM X 7,500................ 123

Plate 5-32 Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 21 days p.i .. Note eosinophil has large crystalloid cytoplasmic granules (arrows) which infiltrated the lamina propria adjacent to plasma cells (P). Lead citrate & uranyl acetate TEM X 15,000.......................... 124

Plate 5.33 Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 14 days p.i.. Note intravascular fibrin (F) deposition adjacent to the endothelial cell (E). The endothelial cell is swollen and has dilated mitochondria (m). Lead citrate & uranyl acetate TEM X 10,000.......................... 124

Plate 5.34 Electron Micrograph. Nasal mucosa of a rabbit from Group 2 killed 21 days p.i.. Elongation of goblet cell which contains many vacuoles with mucus (M) toward the nasal cavity. Lead citrate & uranyl acetate TEM X 9,600.......................... 125

Plate 5.35 Electron micrograph. Nasal mucosa of a rabbit from Group 2 killed 21 days p.i.. Note secretory plasma cells contain extensive rough endoplasmic reticulum and globulin laden granules (arrow heads) inside the cytoplasm. Lead citrate & uranyl acetate TEM X 9,000.......................... 126

Plate 5.36 Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 14 days p.i.. Note the blebbing (b) in cell membrane of the mucosal gland epithelium and disorganised mitochondria (arrow head). Lead citrate & uranyl acetate TEM X 12,500.... 127
Plate 5.37 Electron micrograph. Nasal mucosa of a rabbit from Group 1 killed 14 days p.i.. Note the thickening of capillary wall due to the deposition of electron-opaque material (op) under the endothelial cell and within the basement membrane. Lead citrate & uranyl acetate TEM X 15,700............................... 127

Plate 5.38 Electron micrograph. Higher magnification of the previous section. Note the deposition of electron-opaque (op) structureless material. Lead citrate & uranyl acetate TEM X 34,000.. 128

Plate 5.39: Electron micrograph. Nasal mucosa of a rabbit from Group 3 killed 14 days p.i.. Note the normal structure of epithelial cells (E), cilia (arrow heads) and organelles (arrows). Lead citrate & uranyl acetate. TEM X 2,900. .. 128

Plate 5.40 Electron micrograph. Tracheal mucosa of a rabbit from Group 1 killed 14 days p.i.. Note the swelling of the epithelial cells and severe vacuolation of their cytoplasm. The organelles are scattered inside the vacuolated cytoplasm. Lead citrate & uranyl acetate TEM X 2,250................................. 130

Plate 5.41 Electron micrograph. Tracheal mucosa of a rabbit from Group 1 killed 14 days p.i.. Focal ballooning of microvilli tip. The ballooned microvilli have multilayered membrane and contained an oval multilayered structure with homogenous electron-lucent material (arrow head). Note that microvilli adjacent to this deformed microvilli is club-shaped. Lead citrate & uranyl acetate TEM X 77,000......................... 131

Plate 5.42 Electron micrograph. Lung of a rabbit from Group 1 killed 14 days p.i.. The intracellular vacuoles (V) in the pneumocytes type II are dilated and coalesced to each other. The dense-lamellar material is disrupted and reduced in density. Lead citrate & uranyl acetate TEM X 5,500.............................. 132

Plate 5.43 Electron micrograph. Lung of a rabbit from Group 1 killed 21 days p.i.. Note eosinophil (E) infiltration in the interstitial tissue beside heterophil (H) and plasma (P) cell. Lead citrate & uranyl acetate TEM X 4,670... 133

Plate 5.44 Electron micrograph. Higher magnification of the previous section. Note the crystalloid intracytoplasmic granules (arrow heads) of an eosinophil. Lead citrate & uranyl acetate TEM X 8,750.. 133
Plate 5.45 Electron micrograph. Lung of a rabbit from Group 2 killed 14 days p.i. Note the alveolar macrophage (AM) laden with remnant of degenerated heterophils (arrow head). Lead citrate & uranyl acetate TEM X 5,300................................. 134

Plate 5.46 Electron micrograph: Lung of a rabbit from Group 2 killed 21 days p.i.. Note the phagosomes (arrow heads) inside the cytoplasm of an alveolar macrophage. Lead citrate & uranyl acetate TEM X 8,600................................. 134

Plate 5.47 Electron micrograph. Lung of a rabbit from Group 1 killed 21 days p.i.. Note the intravascular fibrin (f) deposition and some being engulfed by pulmonary macrophages (Pm). Lead citrate & uranyl acetate TEM X 10,000................................. 135

Plate 5.48 Electron micrograph. Lung of a rabbit from Group 1 killed 21 days p.i.. Note the fibrin (f) deposition in the alveolar lumen. Lead citrate & uranyl acetate TEM X 16,400................................. 136

Plate 5.49 Electron micrograph. Lung of a rabbit from Group 1 killed 14 days p.i. Note the swelling of pneumocytes type I with dilatation of their mitochondria (m) and containing intracytoplasmic bacterial cells (arrow heads) within vacuoles. The cell is protruding and appeared about to detach into the alveolar lumen. Lead citrate & uranyl acetate TEM X 8,260...... 136

Plate 5.50 Electron micrograph. Lung of a rabbit from Group 2 killed 21 days p.i.. Note a cluster of hyperplastic pneumocytes (Pn) type II on the basement membrane with infiltration of heterophils. Lead citrate & uranyl acetate TEM X 4,770................................. 137

Plate 5.51 Electron micrograph. Lung of a rabbit from Group 2 killed 14 days p.i.. Note the sloughed necrotic pneumocyte (np) type II inside the alveolar lumen with infiltration of a heterophil (H) adjacent the degenerated pneumocytes. Lead citrate & uranyl acetate TEM X 5,900................................. 137

Plate 5.52 Electron micrograph. Lung of a rabbit from Group 1 killed 21 days p.i.. Note fibroblast and collagen fibre (CF) production in the interstitium beside heterophils (h) infiltration. Lead citrate & uranyl acetate TEM X 8,400. 138

Plate 5.53: Electron micrograph. Lung of a rabbit from Group 3 killed 21 days p.i.. Note thin interalveolar septae (arrow), flat pneumocytes (arrow heads) and alveolar macrophages (AM). Lead citrate & uranyl acetate TEM X 8,400. 139
Plate 6.1 Photograph. Skin of a guinea pig injected intradermally with infiltrate of two different *Pasteurella multocida* strains. Note the zone of necrosis with adjacent red and swollen skin lesion 48 hrs p.i. at the site of type D:3 injection (arrow). The negative zone showed no cutaneous reaction (arrow head).............. 160

Plate 6.2 Photograph. Lungs and heart of rabbit from Group 1 that died 6 days p.i. Fibrin deposition on the pleura and pericardium........ 166

Plate 6.3 Photograph. Head of a rabbit from Group 1 that died 19 days p.i. Submandibular firm white mass surrounded by a thick fibrous capsule with ulceration................................. 167

Plate 6.4 Photograph. A firm mass was removed from the submandibular region of a rabbit from Group 1 that died 19 days p.i. consists of yellowish creamy abscess tinged with blood.......................... 167

Plate 6.5 Photomicrograph. Nasal mucosa of a rabbit from Group 1 that died 12 days p.i.. Haemorrhage and fibrin deposition on the surface epithelium with sloughing of epithelial cells. Infiltration of heterophils and mononuclear cells in the lamina propria. H&E X 140... 169

Plate 6.6 Photomicrograph. Nasal mucosa at higher magnification of the above section. Note the fibrin threads mixed with free red blood cells and few heterophils. Oedema and mononuclear cell infiltration are also observed in lamina propria. H&E X 350.... 169

Plate 6.7 Photomicrograph. Trachea of a rabbit from Group 1 died 7 days p.i.. Note the congestion of mucosal blood vessels, oedema and mild infiltration of heterophils and mononuclear cells in the lamina propria. H&E X 350... 171

Plate 6.8 Photomicrograph. Trachea of a rabbit from Group 1 died 19 days p.i.. Note the aggregation of degenerated heterophils mixed with necrotic debris and bacterial colonies on the serosal layer of trachea surrounded by fibrous connective tissue capsule with infiltration of mononuclear cells. H&E X 140. 172

Plate 6.9 Photomicrograph. Lung of a rabbit from Group 1 died 7 days p.i.. Severe congestion of pulmonary artery and interalveolar capillaries with precipitation of acidophilic protienaceous exudate in the interstitium and alveolar lumen. Infiltration of few heterophils and lymphocytes. H&E X 140......................... 173
Plate 6.10 Photomicrograph. Higher magnification of the above section showing engorged interalveolar capillaries and oedema inside alveolar lumens. H&E X 350. 173

Plate 6.11 Photomicrograph. Lung of a rabbit from Group 1 that died 12 days p.i. Note fibrin threads deposition in the alveolar lumen and infiltration of mononuclear cells predominantly macrophages and lymphocytes. Note also presence of bacterial colonies in alveolar lumina. H&E X 350. 175

Plate 6.12 Photomicrograph. Lung of a rabbit from Group 1 killed 14 days p.i. Note aggregation of degenerated heterophils in the alveolar lumen and interstitium. H&E X 140. 175

Plate 6.13 Photomicrograph. Kidney of a rabbit from Group 1 died 7 days p.i. Congestion of intertubular capillaries and sloughing of necrotic epithelial lining of renal tubules. H&E X 350. 178

Plate 6.14 Photomicrograph. Liver of a rabbit from Group 1 killed 14 days p.i. Note congestion of central vein and sinusoidal capillaries. Vacuolation of hepatocytes and disarrangement of sinusoids. H&E X 350. 179

Plate 6.15 Photomicrograph. Heart of a rabbit from Group 1 died 12 days p.i. Subepicardial haemorrhage with thickening of pericardium due to fibrin deposition. H&E X 350. 181

Plate 6.16 Photomicrograph. Heart of a rabbit from Group 1 that killed 19 days p.i. Note the oedematous separation between muscle bundles and vacuolation of the sarcoplasm of muscle fibers. H&E X 700. 181

Plate 6.17 Photomicrograph. Myocardium of a rabbit from Group 2 that died 3 days p.i. Note infiltration of heterophils and mononuclear cells with oedematous separation between the degenerated muscle fibers. H&E X 350. 182

Plate 6.18 Photomicrograph. Heart of a rabbit from Group 2 that died 3 days p.i. Note the thickening of pericardium due to infiltration of heterophils and mononuclear cells. Free red blood cells mixed with bacterial colonies are also observed. H&E X 350. 182

Plate 6.19 Photomicrograph. Brain of a rabbit from Group 1 that died 12 days p.i. Note congestion of capillaries in meninges and brain matrix with presence of bacterial colonies inside blood capillaries. Microgliosis is also seen in the brain matrix. H&E X 350. 184
Plate 6.20 Photomicrograph. Brain of a rabbit from Group 1 that died 12 days p.i.. Focal aggregation of heterophils in the brain matrix. H&E X 350 ... 184

Plate 6.21 Photomicrograph. Brain of a rabbit from Group 2 that killed 21 days p.i.. Severe infiltration of heterophils and few mononuclear cells in the meninges and brain matrix. H&E X 350. 185

Plate 6.22 Photomicrograph. Subcutaneous tissue of a rabbit from Group 1 died 19 days p.i.. Note necrosis of skeletal muscle with calcium deposition. Infiltration of degenerated heterophils, mononuclear cells and proliferation of fibroblast are also observed. H&E X 350... 186

Plate 6.23 Photomicrograph. Salivary gland of a rabbit from Group 1 died 19 days p.i.. Note necrosis of glandular epithelium with infiltration of the degenerated heterophils and mononuclear cells in the glandular tissue. H&E X 350... 189

Plate 6.24 Photograph. Sagittal section of a head of a rabbit from Group 2 died 2 days p.i.. Note congestion of the nasal mucosa and haemorrhage in the nasal cavity. ... 194

Plate 6.25 Photograph Lung of a rabbit from Group 1 died 5 days p.i.. Note congestion of lungs and deposition of fibrin on the pleura...... 196

Plate 6.26 Photograph. Kidneys of a rabbit from Group 2 died 4 days p.i.. Longitudinal section of congested and oedematous kidney. 196

Plate 6.27 Photomicrograph. Nasal mucosa of a rabbit from Group 1 died 5 days p.i.. Note congestion of mucosal blood vessels with the presence of bacterial colonies inside the blood vessels. Mononuclear cell infiltration in the lamina propria. H&E X 350. 198

Plate 6.28 Photomicrograph. Trachea of a rabbit from Group 2 died 3 days p.i.. Note haemorrhage on the surface epithelium and congestion of the mucosal and submucosal blood vessels. H&E X 350...... 199

Plate 6.29 Photomicrograph. Lungs of a rabbit from Group 1 died 4 days p.i.. Severe congestion of the pulmonary artery and interalveolar capillaries with haemorrhages. Proteinaceous material is also observed in the alveolar lumen beside thickening of pleura as a result of fibrin deposition and mononuclear cells infiltration. H&E X 140......................... 201