

UNIVERSITI PUTRA MALAYSIA

DIFFERENTIAL PROTECTION OF A THREE-PHASE POWER TRANSFORMER USING HALL EFFECT CURRENT TRANSDUCER

ALI ASGHAR FATHOLLAHI FARD

FK 2002 5

DIFFERENTIAL PROTECTION OF A THREE-PHASE POWER TRANSFORMER USING HALL EFFECT CURRENT TRANSDUCER

By
ALI ASGHAR FATHOLLAHI FARD

Thesis Submitted to the School of Gratuate Studies, Universiti Putra Malaysia, in Fulfilment of Requirement for the Degree of Master of Science

March 2002

ii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment

of the requirement for the degree of Master of Science

DIFFERENTIAL PROTECTION OF A THREE-PHASE POWER TRANSFORMER USING HALL EFFECT CURRENT TRANSDUCER

By

ALI ASGHAR FATHOLLAHI FARD

March 2002

Chairman: Nasrullah Khan, Ph.D.

Faculty: Engineering

In a power system, transformers and other electrical equipment need to be protected

not only from short circuit, but also from abnormal operating conditions, such as

over loading, and differential fault protection.

The differential protection relay works on the principle that in a healthy system,

the current leaving a circuit is equal to the current entering the circuit. The

differential protection can also be applied to a transformer (even though the

primary and secondary currents are not equal), by rating the CTs according to

the transformation ratio.

In a power system, the differential relay should operates only in its specified

protection zone, and not for out of its protection zone, when short circuit fault occurs.

Differential protection zone for a transformer is in the limited zone between transformer primary side CTs and transformer secondary side CTs. If a short circuit fault occurs in this zone, then the differential relay will operate to protect transformer not to be damaged by the high circuit current.

This work has been focused on construction, normal operation of differential relay and on the problem when differential relay is functioning outside of its protection zone and a way of solving the problem, further to test its function by creating faults on nearby power system. This work has shown that if the current ratio of current transducers are not matched with the current of transformer, therefore it would cause the differential relay functions even though the faults occur outside the relay protection zone.

ľv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Master Sains

PERLINDUNGAN PERBEZAAN UNTUK PENGUBAH ELEKTRIK TIGA FASA MENGGUNAKAN TRANSDUSER KESAN HALL

Oleh

ALI ASGHAR **FATHOLLAHI FARD**

Mac 2002

Pengerusi: Nasrullah Khan, Ph.D.

Fakulti: Kejuruteraan

Di dalam satu sistem kuasa, pengubah serta peralatan elektrik yang lain perlu

dilindungi bukan sahaja dari litar pintas, juga dari keadaan kendalian yang luar biasa

seperti keadaan beban lebih dan bila berlaku perbezaan arus.

Geganti perlindungan kebezaan arus berkendali berdasarkan prinsip bahawa di dalam

satu sistem yang baik, arus yang memasuki satu litar adalah sama dengan arus yang

meninggalkan litar tersebut. Kaedah perlindungan perbezaan arus boleh

diaplikasikan kepada satu pengubah (walaupun arus primer dan arus sekunder adalah

tidak sama), secara pengkadaran pengubah arus mengikut nisbah transformasi.

Geganti pembeza arus di dalam satu sistem kuasa, hanya berkendali di dalam zon perlindungan yang ditetapkan semasa kerosakan litar pintas berlaku dan bukan di luar zon perlindungan yang ditetapkan bila berlaku kerosakan litar pintas. Zon perlindungan perbezaan arus untuk satu pengubah terhad di dalam zon yang terbatas di antara sebelah primer dan sebelah sekunder pengubah-pengubah arus. Jika satu litar pintas berlaku di dalam zon tersebut, maka geganti pembeza arus akan berkendali untuk melindungi pengubah daripada kerosakan disebabkan arus litar yang tinggi.

Objektif tesis ini adalah untuk menumpukan kepada binaan geganti pembeza arus yang biasa dan masalah bila geganti pembeza berkendali di luar zon perlindungannya serta cara mengatasi masalah ini, dan melakukan ujian-ujian untuk memastikan fungsinya secara mengadakan kerosakan pada sistem kuasa yang berhampiran. Tesis ini menunjukkan bahawa, jika nisbah arus transduser tidak sepadan dengan arus sistem kuasa, geganti pembeza akan berkendali walaupun kerosakkan berlaku di luar zon perlindungan.

ACKNOWLEDGMENTS

I would like to express all my sincere thanks to my supervisor Dr. Nasrullah Khan. This thesis would not have been done without his support, encouragement and comments. Thanks and appreciation is extended to the members of the supervisory committee Dr. Norman Mariun head of department and Dr. Sinan Mahmod.

I would like also to express my thanks to the staff at the Graduate School Office for their help and cooperation. Also, my appreciation and gratitude goes to all of the individuals at the Department of Electrical & Electronic Engineering for their cooperation.

I certify that an Examination Committee met on 26nd March 2002 to conduct the final examination of Ali Asghai Fathollahi Faid on his Master of Science thesis entitled "Differential Protection of a Three Phase Power Fransformer Using Hall Effect Current Transducer" in accordance Universiti Pertaman Malaysia (Higher Degree) Act 1980 and Universiti Pertaman Malaysia (Higher Degree) Regulations 1981. The committee recommends that candidate be awarded the relevant degree. Members of the Examination Committee are as follows.

NASHIREN FARZILAH MAILAH

Faculty of Engineering, University Putra Malaysia (Chairman)

NORMAN MARIUN, Ph.D.

Faculty of Engineering, University Putra Malaysia (Member)

SINAN MAHMOD, Ph.D.

Faculty of Engineering, University Putra Malaysia (Member)

NASRULLAH KHAN, Ph.D.

Faculty of Engineering, University Putra Malaysia (Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D.

Professor/Deputy Dean, School of Graduate Studies Universiti Putra Malaysia

Date 3 () APR 2002

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Master of Science.

AINI IDERIS, Ph.D.

Professor/Dean, School of Graduate Studies, Universiti Putra Malaysia

Date: 13

13 JUN 2002

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Alf Asghar Fathollahi Fard

Date: 30 March, 2002

TABLE OF CONTENTS

	P	age
ABSTRACT		ii
ABSTRAK		iv
ACKNOWLED	GEMENT	Vi
APPROVAL	NT	vii
DECLARATIO LIST OF TABL		ix
LIST OF TABL		xi xiii
LIST OF PICTU		xiv
LIST OF ABBR		χV
CHAPTER		
	ODUCTION	
1.1		1
1.2		2
1.3	8	2
1.4	Objective and ways to solve the problems	4
1.5	Scope of work	5
II I ITED	ATURE REVIEW	
2.1	Generator and transformer protective relays	7
2.2	Differential protection	10
2.3	Application of differential protection	11
2.4	Principle of circulating current differential protection	12
2.5	Difficulties in differential protection	13
2.5.1	Difference in pilot wire lengths	13
2.5.2	CT ratio errors during short-circuits	14
2.5.3	Saturation of CT magnetic circuit during short circuit condition	14
2.5.4	Magnetizing current inrush in transformer while switching	14
2.5.5	Tap-changing	15
2.6	Differential relays harmonic restraint	15
2.7	Differential protection of three-phase circuit	16
2.8	The approximation and if an	16
2.9	The precision rectifier	17
2.10 2.11	Operational amplifier The theory of the operational amplifier	19 2 0
III METI	HODOLOGY	
3.1	Instrument transformer	24
3.2	Construction features	24
3.3	Rating and ratio	26
3.4	Current transformer thermal rating factor	28

3.5	Insulation class	29
3.6	Relay accuracy of a current transformer	30
3.7	Current transformer	32
3.8	Calculation of current-transformer and auxiliary current transformer for differential protection of a three-phase	20
2.0	power transformer	38 38
3.9 3.10	Calculation of current transformers on delta/star transformer Calculation of current transformer on star/delta transformer	50
3.10		57
3.11	Designed three-phase electronic circuit Contactor circuit	58
3.12	The circuit of relay 87 simulator	56 59
3.13	Power supply for LM741 and current transducers	62
3.14	** *	63
3.15	The comparator circuit	64
3.10	Operation of design circuit differential relay The indicator circuit	66
IV RE	SULT AND DISCUSSIOIN	
4.1	Circuit diagram and connection	67
4.2	Connection procedures	69
4.3	Transformer tripping and disconnection	72
4.4	Testing relay with faults	74
4.5	Result of the experiment and discussion	75
v co	ONCLUSION	
5.1	Conclusion	77
5.2		77
	ERENCES	78
	ENDIX	80
BIOD	ATA OF THE ALITHOR	103

LIST OF TABLES

Table		Page
2.1	Technical specification of op-amp LM741	20
3.1	Current transformers ratio	41
3.2	Recommended mismatch	44
3.3	Differential relay tap ratio	45

LIST OF FIGURES

Figures		Page
2.1	CT and PT connection	9
2.2	Principle of circulating current relay	12
2.3	Hall effect principle with no magnetic field	16
2.4	Hall effect principle	17
2.5	Precision rectifier	17
2.6	Precision rectifier circuit	18
2.7	Pin configuration of op-amp LM741	19
2.8	Basic op-amp unit	21
2.9	Equivalent of op-amp circuit	21
2.10	Basic op-amp connection	22
2.11	Operation of op-amp as constant gain multiplier	23
3.1	Current transformer connected to line	32
3.2	Adding a tap in the secondary for CT	33
3.3	Double secondary current transformer	34
3.4	A three wire, three-phase circuit	35
3.5	Four wire delta, three-phase circuit	35
3.6	Four wire star, three-phase circuit	36
3.7	A three wire, three-phase circuit	36
3.8	Transformer delta/star primary and secondary connection	39
3.9	CT connection on input and output side of delta/star transformer	41
3.10	Relay connection on transformer delta/star	44
3.11	Relay connection with three-phase transformer and CTs	48
3.12	Transformer star/delta primary and secondary connection	51
3.13	CT connection on input and output of star/delta transformer	53
3.14	Relay connection on transformer star/delta	55
3.15	Block diagram of designed electronic circuit	57
3.16	Contactor circuit	58
3.17	Schematic diagram of relay	60
3.18	The circuit design for power supply	62
3.19	The circuit diagram for the 3-phase comparator circuit	63
3.20	A sample of operational amplifier as differential circuit	64
3.21	The indicator schematic diagram	66
4.1	Delta / grounded star three-phase transformer	67
4.2	Cycle event report by relay	68
4.3	Fault maker circuit	69
4.4	Relay and CTs on connection with three-phase transformer	70
4.5	Tripping contactor circuit	73
4.6	Transistor drive circuit	74

LIST OF PLATES

Plate		Page
3.1	The current transformers	27
3.2	The 5kVA, three-phase transformer	39
3.3	The current-balancing auto-transformers	49
3.4	The circuit connection of transformer, loads and CTs	49
3.5	The four-pole contactor	59
3.6	The differential relay and comparator internal circuit	61
3.7	The differential relay	61
3.8	The three-phase transformer with hall-effect transducers	65
3.9	Top view of three-phase transformer with hall-effect transducers	65

LIST OF ABBREVIATIONS

A Ampere

AC Alternative current

Auto Automatic
Aux Auxiliary
C° Degree Celsius
CT Current transformer
DC Direct current
G Generator

HECT Hall effect current transformer

IEEE Institute of electrical & electronic engineering

I / OInput / OutputkVAKilo volt ampereLEDLight emitted diodePCPersonal computerTTransformerVAVolt ampere

VT Voltage transformer

CHAPTER I

INTRODUCTION

1.1 Introduction

A system consists of generator, transformers, distribution lines and the grid system needs to be protected. Short circuits occur in power systems when equipment insulation fails, due to the system being over-voltages which can be caused by lightning or switching surges, insulating contamination, or by other mechanical and natural causes.

However careful design, operation, and maintenance can help to minimize the occurrence of short circuits but they cannot eliminate them. In case of such short circuits, currents can be several orders of magnitude larger than normal operating currents and, if allowed to persist, may cause insulation damage, conductor melting fire, or even explosion. Although occurrence of short circuits is somewhat of a rare event, it is of utmost importance that steps be taken to remove the short circuits from a power system as quickly as possible.

In power systems, the short circuit removal process is executed automatically, that is, without human intervention. The equipment which is responsible for this short circuit removal process is collectively known as the protection system [1].

Many kinds of protective devices (e.g. relays) are being used in electrical power system to protect feeder, busbar, generator, transformer, motor, and transmission lines.

A relay is a device designed to produce sudden predetermined changes in one or more physical systems on the appearance of certain conditions in the physical system controlling it. The IEEE defines a relay as a device whose function is to detect defective lines or apparatus or other power system conditions of an abnormal or dangerous nature and to initiate appropriate control action [2].

One of the protection methods for a power transformer that is protected from differential input and output currents is by means of differential relay. Hence in this study the differential relay, its working principle and problems involved in the power system for protecting a power transformer, are discussed.

1.2 Background review

Differential relays are commonly used to protect generators, buses, and transformers. When the relay in any phase operates, all three phases of main circuit breaker will open, as well as the generator neutral and field breakers in a power plant protection [3].

The protection method used for power transformers depends on the transformer MVA rating. Fuses are often used to protect transformers with small MVA rating,

whereas differential relays are commonly used to protect transformers with ratings larger than 10 MVA [4].

The differential relay (e.g. transformer differential relay which is called 87 or 87T) works on the principle that "in a healthy system", the current leaving a circuit is equal to the current entering the circuit". This differential principle can also be applied to a transformer (even though the primary and secondary currents are not equal), by rating the Current Transformers (CTs) according to the transformation ratio. Two sets of CTs (of the corrected ratio) are installed on either side of the transformer in order to measure the 'differential' value between incoming and outgoing current [5].

The function of CT is to produce in its secondary winding a current Is, which is proportional to primary current Ip. CT is used in power system circuit, which is having high current of hundreds amperes range. CT minimum range standard is 20 A in primary to be converted to secondary current in 5 A range for convenience of measurement and to apply for protection relays [6].

1.3 Problems statement

A common problem in differential transformer protection is the mismatch of relay currents that occurs when standard CT ratios are used. If the primary voltage rating in a system is changed to a new value instead of previous one, because of some

different design or whatever circuit changing in that particular system, then the primary current rated will be changed as well [5].

In this case, the primary winding needs a new rating of CT. This new CT gives a different rated condition, and will not be balanced to secondary winding CT. In this situation, the mismatch will go up, which is not suitable for differential protection and designing of current transformers. This problem will be discussed in more details later as in the calculation part.

For transformer differential protection in a large power system, the differential relay should operate only in its indicated protection zone, and not for out of its protection zone, such as on the load side, while short circuit fault occurs. The problem starts to show itself when transformer differential relay is functioning in out of its protection zone. This problem will be explicitly explained in the related areas of this study.

1.4 Objectives and ways to solve the problems

The objectives of this study are to work on those problems stated earlier and to solve the problems. The solutions presented will thoroughly explained the relay working principle and the activating points of the relay. Finally, the results of the solutions will be tested by using a manual fault trip on the transformer itself, and load side of practical circuit which has already been carried out by the author.

1.5 Scope of work

To achieve the objectives of this study, more details about differential fault against unit transformer, an electrical protection circuit with current transformers, have to be investigated by the researcher. This protection circuit requires a combination of protective functions and differential relay system. The practical circuit for transformer differential protection, have a three-phase transformer, six current transformer (CT), three auxiliary (matching) transformers, an automatic tripping switch (circuit breaker), and a device digital differential relay, which are being used for differential protection for the power transformer.

An electronic simulation circuit of transformer differential protection relay, is designed by the author. In this electronic circuit, six hall-effect transducers and six integrated-circuits as comparator circuits are used. A detailed explanation of the simulation circuit and theory of hall-effect will be discussed in chapter two.

This study will explain a way of determining current transformers for primary and secondary winding of any MVA rating of three-phase transformers with different connection in primary and secondary, which are widely used in power system.

A complete set of formulas, together with the calculations of current transformers ratio for differential relay of three-phase power transformer is presented in chapter three. In addition, this study also aim to introduce a method of calculation of auxiliary current transformers, to be matched with main CT in protection system. These auxiliary CTs are small and inexpensive devices since their primary and secondary windings are low-voltage low-current circuits.

Besides, through this study, it will also introduce the transformer protective relays which are used in power system, but the emphasis will be on the differential protection and on differential relay.

CHAPTER II

LITERATURE REVIEW

2.1 Generator and transformer protective relays

The functions of the generator and transformer protection and metering circuits are to:

- isolate and thereby prevent damage to the generator and transformer under certain internal and external fault conditions
- 2. ensure the safety of plant personal, and
- 3. annunciate an alarm when a fault occurs. Action to remedy the fault prevents it from deteriorating and causing further damage [6].

The generator, generator-transformer and the unit-transformer are referred to as a 'unit system' and the protection relays and devices which protect this equipment are collectivity referred to as a unit protection system[6].

When a short circuit fault occurs, the current flowing through the affected circuit increases substantially. Similarly, when an open circuit fault occurs, the voltage in the affected circuits changes substantially. The protective relays

sense any abnormal current and voltage in their circuits and initiate either an alarm if the fault is minor or tripping of associated equipment.

In electrical systems, continuous and accurate measurement of important parameters such as voltage, current and power is essential for the safe operation of systems and equipment. These are usually provided by instrument transformers (current transformer and potential transformers) which provide inputs to protective relays and other metering instrument.

Circuit breakers and instrument transformers, along with protective relays, form the protective circuits for power plant systems. Instrument transformers perform two primary function:

- 1. they insulate instrument, relays and meters from line voltage and
- they transform the line current or voltage to values suitable for measurement on standard instrument, meters and relays.

A current transformer or CT supplies the instrument or relay connected to its secondary winding with a current proportional to its primary current but small enough to be safe for the instrument or relay.

The secondary of a current transformer is usually designed for a rated current of 5 A. Its primary winding is connected in series with the line. Normally there is no separate primary winding. The main current carrying busbar which passes through the secondary winding, becomes the single-turn primary winding.

A potential transformer or PT (also called voltage transformer or VT) supplies the instrument or relay connected to its secondary winding with a voltage proportional to the primary voltage but small enough for it to be safe for the instrument or relay. The secondary of a potential transformer is usually designed for a rated voltage of 115V. A potential transformer primary winding is connected in parallel with the line. Figure 2.1 shows how current and voltage transformers and wattmeters are applied to measure current, voltage and power respectively.

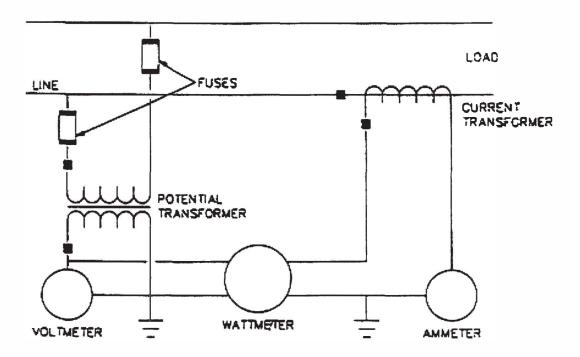


Figure 2.1: CT and PT connection [6]

