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Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in fulfilment 
of the requirements for the degree of Master of Science. 

DEVELOPMENT OF ELLIPTIC AND HYPERBOLIC GRID GENERATION 

By 

NORZELAWATI BT. ASMUIN 

April 2000 
Chairman: Associate Professor Dr ShahNor Basri, P.Eng. 

Faculty: Engineering 

It has been found that partial differential equations (PDE's) could be used to 

efficiently generate high quality structured grids. The grid discretizes the physical 

domain to computational domain, typically an array data structure in Fortran. This 

study concentrates on elliptic and hyperbolic methods for structured grid generation. 

The elliptic method uses the Laplace equations to transfonn the physical domain to 

computational domain and fmite difference to generate the grids. Whereas, the 

hyperbolic method uses orthogonal relations to solve the PDE's, a marching scheme 

to create the grids and then cubic spline interpolations to smoothen grid lines at the 

boundaries. C-type and O-type elliptic and hyperbolic grids have been generated for 

an airfoil and smooth boundary conditions were obtained in the elliptic method but 

not by the hyperbolic method. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

PEMBANGUNAN PENJANAAN KEKlSI ELIPS DAN lllPERBOLA 

Oleh 

NORZELA WATI BT. ASMUIN 

Jun 2000 
Pengerusi: Profesor Madya Dr ShahNor Basri, P.Eng. 

Fakulti: Kejuruteraan 

Persamaan pembezaan separa telah dapat digunakan untuk menjana tertisi 

berstruktur berkualiti tinggi dengan baik. Tertisi ini terdiskret dari domain fIzikal ke 

domain berkomputer, bentuk ini biasanya didalam struktur susunan data didalam 

bahasa pengaturcaraan Fortran. Kajian yang dijalankan tertumpu pada penjanaan 

tertisi berstruktur menggunakan kaedah elips dan hiperbola. Kaedah elips 

menggunakan persamaan Laplace dalam pengubahan domain fIzikal ke bentuk 

domain berkomputer serta pembezaan terhingga untuk menjanakan tertisi- tertisi. 

Kaedah hiperbola pula menggunakan perhubungan ortogon dalam penyelesaian 

persamaan pembezaan separa serta skim rambatan dalam pembentukan tertisi-

tertisi. Seterusnya penentudalaman gelugur kiub digunakan bagi melicinkan garisan 

tertisi pada sempadan. Tertisi jenis-C dan jenis-O bagi elips dan hiperbola telah 

berjaya dijalankan untuk menjana airfoil. Kaedah sempadan yang Iicin telahpun 

diperolehi menggunakan kaedah elips tetapi tidak dengan kaedah hiperbola. 
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CHAPTER I 

INTRODUCTION 

Computational aerodynamics, one of the most important technologies in the 

development of advanced vehicles, is normally complicated. In many cases the flow 

around an arbitrary body shows strongly three dimensional, unsteady and 

compressible flow and sometimes with indications of flow discontinuity such as 

shock wave. The ability to approach aerodynamics problems using computational 

methods, assess the results and make engineering decisions requires very different 

skills and attitudes than those associated with fundamental algorithm development. 

The major goals of computational aerodynamics typically includes: 

• vehicle design, for example, development of optimum airfoil 

• performance, for example, estimation of drag 

• aeroelasticity analysis, including flutter and divergence 

• definition of aerodynamic characteristics for evaluations of stability, control 

and handling characteristics. 

The governing equations, which describe all features of the flow, are called 

the Navier-Stokes equations. The Navier-Stokes equations represent the exact 

mathematical model of fluid dynamics. These equations can describe physical flow 

phenomena from the simplest case such as the motion of smoke in the air to very 

complicated flow pass an array of rotor blades in the compressor of a gas .turbine 

engine. As indicated by McCormack (1985), if the Navier-Stokes equations could 

be solved exactly, it might change the way current aircraft design has been adopted 
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and significantly reduce the time-consuming wind tunnel testings. Unfortunately, 

the Navier-Stokes equations remain still unsolved for most flow problems in 

engineering. In response to the difficulties in solving the fundamental equation of 

fluid flow, approximate solutions were introduced. There are basically three ways of 

solving the flow problems i.e. completely experimental work, numerical modelling 

or derivation of approximate solutions. 

Two processes must be accomplished in order to generate a complete 

computational solution; grid generation and numerical simulation. Grid generation is 

the act of specifying the object and the surrounding domain. Grid generation is the 

process of specifying the position of all of the grid points that will define both the 

objects to be simulated, as well as the surrounding. Grid generation techniques for 

simple bodies are fairly straightforward but special techniques must be employed to 

handle complex geometries such as aircraft or jet engines. Figure 1.1 shows the 

stages of the code development process. 

Flow solver 
Geometry/mesh/grid 

-+ • Linear potential .. Post processing 
Set up for analysis • Full potential 

... Graphical 

• Euler equation Analysis 

• Navier Stoke 

Figure 1.1: CFD Code development process 

The geometry of the flow domain in computational fluid analysis is usually 

complicated. Finite-difference and finite-element solutions both require a discrete 

set of points or cells covering the physical field, and the efficiency of the 

computation is greatly enhanced if there is some organization to this set. This 

organization can be provided by having the discretization defined by the nodes of a 
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curvilinear coordinate system filling the physical field, which is provided by 

numerical grid generation. 

In both solution technique the most important factor is to maintain a suitable 

number of grid points where large or rapid changes are likely to occur. The grid 

points are the locations in physical space where the flow variables are actually 

computed and stored. These points are usually specified by their position relative to 

some fixed point, or origin, and then referenced using their coordinate values. There 

will be a number of grid points used to define the surfaces of any body being 

simulated, as well as enough grid points to simulate the surrounding. When the 

governing equations are solved numerically, the grid points are actually 

"transformed" from physical space to computational space. This is done in order to 

make it easier to apply numerical boundary conditions. 

The grid points are positioned at what appears to be irregular points in 

physical space, however in computational space these points are positioned on a 

uniform mesh. On a structured mesh, the grid points along each line can be 

connected to form a grid line. In unstructured grids, the use of grid lines makes the 

visualization of grids and solution much easier. Figure 1 .2, shows a NACA 0012  

airfoil structured grids with the same grid visualization using grid points on the grid 

point page. The surface of the airfoil is completely defined by grid lines. 
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Figure 1 .2: NACA 001 2. 

Structured gridding techniques are classified into two main categories, global 

and frontal. In global methods, the whole domain boundary is defined in advance. 

The inner domain is discretized with either algebraic method or by solving a set of 

elliptic PDE's that maximize some measure of grid quality such as smoothness 

and/or orthogonality. Algebraic techniques such as transfinite interpolation would be 

the preferable choice because of their high efficiency, but they offer only a limited 

amount of automatic control over the mesh and can produce unreliable results 

without significant user oversight. Elliptic PDE methods allow some measure of grid 

quality to.be automatically optimised over the mesh. 

In frontal methods, only one surface of the boundary of the domain is 

defined a priori and advancing this front away from this surface generates the inner 

grid points. The dominant frontal method is based on a hyperbolic system of 

equations though parabolic methods have also been investigated. This thesis, 

concentrates on elliptic and hyperbolic methods. A structured volume grid will 

typically be mapped directly into an array data structure. This means that any grid 
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point can trace a path to any other grid point. It has been found that partial 

differential equations can be used to efficiently generate high quality structured 

grids. 

Grid generation progresses in two phases, Surface Grid Generation and 

Volume Grid Generation. Defining the surface geometry is often referred to as 

defining the solid walls. It refers to the fact that fluid particles cannot pass through a 

solid surface, while they are free to move in any direction in other parts of the flow 

field. There are two main methods of creating a surface geometry. First, the object to 

be simulated has a shape, such as sphere, NACA airfoils, missile geometry and 

complete wings. These types of shapes lead to an efficient grid generation process, 

with high-quality resulting grids. The second maimer in which surface geometries 

are completed is more time-consuming and complex. An aircraft manufacturer will 

typically have the design of aircraft stored on their design computers, usually in the 

form of CAD data files. These files contain a specification of the aircraft's surface 

geometry, but it is not in a form that today's CFD software programmes can 

understand. This step often leads to time-delays in the grid generation process, and it 

is an area of active research and development in the CFD engineering field. 

In order to obtain the forces acting on an aircraft or any other body in motion 

through a fluid, it is necessary to physically model both the surface of the body, and 

the volume of fluid surrounding the body. This modelling or positioning of the grid 

points and grid lines in the surrounding volume is termed volume grid generation. In 

order to generate a suitable volume grid for CFD solutions, the grid generation 

software must maintain certain criteria. Some of these criteria include finite volume 
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in every computational cell, in which the entire volume must be mapped. Depending 

on the type of grid, the grid lines may be required to vary smoothly and intersection 

of grid lines should occur at angles as close to 90 degrees as possible. There are two 

main classes of volume grids, Structured Volume Grids and Unstructured Volume 

Grids. The volume grid generation process for simple geometries, such as wings or 

fuselage, is relatively straightforward. Complications arise when attempting to 

generate a Volume Grid for a wing-fuselage combination, or other bodies with 

realistic shapes. 

There are two approaches to generating volume grids for complex 

geometries. Either maintain a complicated volume grid generation scheme with 

relatively little post-processing effort or use a simpler grid generation scheme with a 

complicated grid processing schemes. 

Unstructured grids have a definite structure, but they are very flexible and 

can be maintained using linear arrays, linked list, binary trees, etc. In unstructured 

grids unlike structured grids, a grid point exists in isolation from other points. Grid 

cells will have no information about its neighbouring cells. This allows unstructured 

grids to easily map very complex geometries and efficiently perform grid adaptation. 

Figure 1.3 shows the unstructured two-dimensional volume grid for a NACA 0012. 

Unstructured grid generation can be divided into two categories, the 

Delaunay Triangulation and Stretching in Delaunay Triangulations. The Delaunay 

triangulation prescribes a unique connectivity for a given set of grid nodes. An 
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important problem when stretching a mesh is the control of large angles in the grid 

in order to keep the error in the solution bounded. 

Figure 1.3: NACA 0012. 

An example of unstructured grid generation is automated quadrilateral grid 

generation (Hasan, 1996). An all-quadrilateral mesh is generated using the Paving 

technique. The geometry of interest is iteratively layered with rows of quadrilateral 

elements from the boundary(s) towards the interior. The shape and size of the 

elements is controlled through a series of interdependent steps. Care is taken to 

minimize the generation of irregular nodes and layer intersections. This technique 

can generate a three dimensional mesh in prismatic or two and half dimensional 

domains. Mesh quality is estimated quantitatively. Elements are well formed, nearly 

square and perpendicular to the boundary. 
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Scope and objective of research 

The scope of this research is to investigate the development of elliptic and 

hyperbolic grid generation. To achieve this goal, the following is required: 

• Study the transformation from physical domain to computational domain for 

elliptic and hyperbolic grid generation 

• Develop and run the programmes for elliptic and hyperbolic grid generation 

• Study the boundary smoothing methods for both grid generation 

The report is divided into six chapters. Chapter 1 is the introduction. A 

review of literature is presented in Chapter 2. Chapter 3 describes the theory of 

elliptic and hyperbolic grid generation. The computational algorithm is presented in 

chapter 4. Chapter 5 is concerned with the computational results and discussion. The 

conclusions and recommendation are presented in chapter 6., 
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LITERATURE REVIEW 

9 

In the late 1970's, the use of computers to solve aerodynamic problems began to 

pay off. One early success was the experimental NASA aircraft called RIMA T (Highly 

manoeuvrable Aircraft Technology) designed to test concepts of high manoeuvrability 

for the next generation of fighter planes. Computational fluid dynamics (CFD) 

constitute a new ''third approach" in the philosophical study and development of the 

whole discipline of fluid dynamics (Anderson, 1995). 

Development of elliptic and hyperbolic grid generation by its very name implies 

a coming together of various disciplines each one having a distinct historical 

development, and any attempt at a comprehensive review of such a vast subject matter 

would require numerous chapters. The survey presented in the subsequent subsections 

includes some of the most recent advancement in the respected topics, and the 

interested reader may use this as a starting point for further study. In each case, 

however, sources of more complete reviews are cited. 

Computational fluid dynamic 

CFD now stands alongside the wind tunnel in terms of importance in 

aerodynamic design. Wind tunnels cannot exist in all the flight regimes such as 

hypersonic flight. Its usage by engineering designers involves many thousands of runs 

per year, and the rate is increasing. For the simpler aerodynamic flows where viscous 

effects are modest, CFD has become the dominant tool of aerodynamic design. The 
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primary role of the wind tunnel for such flows is for validation of a design and for 

determination of aerodynamic characteristic over the broad flight envelope. For more 

complex flows that are dominated by strong viscous effects, CFD is beginning to make 

a contribution (Anderson, 1 995). 

The type of computers and algorithms that existed in the 1970's limited all 

practical solutions to two-dimensional flows. By 1990, CFD with three-dimensional 

flow field solutions were abundant. Some computer programmes for the calculation of 

3-D flows have become industry standards, resulting in their use as a tool in the design 

process. CFD provides a means to calculate the detailed flow field around a complete 

aeroplane configuration, including the pressure distribution over the 3-D surface 

(Anderson, 1995). 

Modern CFD cuts across all disciplines where the flow of a fluid is important. 

There are examples of its applications in the field of automobile and engine design, 

industrial manufacturing, civil engineering, environmental engineering and naval 

architecture (Anderson, 1995). 

CFD is governed by three fundamental principles; conservation of mass, 

conservation of energy and Newton's second law, which can be expressed by either 

integral or partial differential equations. The strongest force driving the development of 

new supercomputers came from the advances of CFD. The earlier high-speed digital 

computers were serial machines, capable of one computational operation at a time. The 

fmite speed of electrons, close to the speed of light, poses an inherent limitation on the 

ultimate execution speed of such serial computers. To overcome this limitation, the 
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architecture of the computers was modified, and parallel processors were developed. 

(Anderson, 1995). 

The advent of CFD has brought in modern fluid dynamics. Therefore, by 

studying CFD today, we are participating in an awesome and historic revolution, truly a 

measure of the importance of the subject matter. 

The various elements of CFD generally include numerical algorithm 

development, transition and turbulence modelling, surface modelling and grid 

generation, scientific visualisation, and validation methodologies. Advances in these 

elements have promoted radically different approaches to the aerodynamic design and 

analysis of aerospace vehicles and systems (Hessenius and Richardson, 1991). In the 

subsequent section emphasis will be on the basic aspects of the numeric of CFD, that is 

discretization. 

Discretization 

Discretization was first introduced in the German literature in 1955 by W.R. 

Wasow, and carried on by Ames in 1965 in his classic book on partial differential 

equations. Discretization is the process by which a closed form mathematical 

expression, such as function or differential or integral equation involving functions, all 

of which are viewed as having infinite continuum of values throughout some domain 

(Anderson, 1 989). It can be approximated by analogous but different expressions, 

which prescribe values at only a fmite number of discrete points or volumes in the 
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domain. The discretization also must conform to the boundaries of the region in such a 

way that boundary conditions can be accurately represented. 

The numerical solution of the differential equations governing a complex fluid 

dynamics problem requires the introduction of a discretization method. Several 

methods have been developed and are currently in use. In the present section the best 

idea and techniques used in the development of the finite difference method will be 

presented (Evangleos, 1 996). 

The numerical solution of the equations of fluid motion require an accurate 

defmition of the surface geometry of interest and the generation of an appropriate 

surface and flow-field grid. The discretization of the field into a collection of points or 

elemental volumes (cells) is required for the numerical solution of the partial 

differential equation describing the fluid motion. One method of discretization is the -

method of fmite difference. The finite difference solutions are widely employed in 

CFD and are elaborated in the next section. 

Finite difference 

The finite difference method is the oldest method applied to the numerical 

solution of differential equations, and its development is based on the definition of the 

derivative and the properties of the Taylor series. In the fmite difference method, the 

domain is discretized into a mesh or grid, and the unknown variables exist only at 

discrete points called nodes. The derivatives are approximated by differences 

(Evangleos, 1996) . 


