

UNIVERSITI PUTRA MALAYSIA

THE EFFECT OF NITROGEN AND POTASSIUM FERTILIZERS AND SOIL TYPES ON RUBBER (HEVEA BRASILIENSIS MUELL. ARG.)

CHANG AH KOW

FH 1989 4

THE EFFECT OF NITROGEN AND POTASSIUM FERTILIZERS AND SOIL TYPES ON RUBBER (HEVEA BRASILIENSIS MUELL. ARG.)

Ву

CHANG AH KOW

Thesis Submitted in Partial Fulfilment of the Requirement for the Degree of Master of Agricultural Science in the Faculty of Agriculture, Universiti Pertanian Malaysia.

November, 1989.


```
To
Set Chin,
Lee Ming,
Lee Churn and
Lee Yoon.
```


ACKNOWLEDGEMENTS

The work reported in this thesis was carried out in the Prang Besar Research Station, Kajang, under the Research and Development Department of Harrisons Malaysian Plantation Berhad (HMPB) Group. (The Group has since been renamed Golden Hope Plantations Berhad in February 1990.) I wish to thank HMPB and in particular, Messrs. R. Shepherd and K. H. Yeow the former Directors of Research, for permission to pursue graduate programme and to report on the findings of the research associated with the course.

I take this opportunity to express my sincere gratitude to my Supervisor, Associate Professor Dr. Sharifuddin bin Haji Abdul Hamid for his encouragement and guidance.

My thanks are also due to the following:

- Mr. Teoh Cheng Hai, Director of Research and Development Department, HMPB, at Prang Besar Research Station for his understanding and for making my study more challenging.
- Mr. Poon Yew Chin of HMPB Oil Palm Research Station, Banting for chemical analyses.

- Dr. Zaharah bt. Abdul Rahman of UPM for her kind support and encouragement.
- Managers and Staff of the estates on which the trials were sited, for their cooperation and assistance,
- 5. Staff of Prang Besar Research Station, especially Mr. Benedict Rethual and Ms. S. Sivaranchitham, Ms. Liau Yon Chin and Ms. Gan Gim Siw for typing the earlier and final drafts of the thesis.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
LIST OF TABLES	ix
LIST OF FIGURES	xvi
LIST OF PLATES	xvii
LIST OF ABBREVIATIONS	xviii
ABSTRACT	xx
ABSTRAK	xxiv
CHAPTER	
I INTRODUCTION	1
The Environment The Problem The Approach	1 2 3
II LITERATURE REVIEW	5
Early Development Post-War Work Recent Work on Rubber Nutrition Responses to Nitrogen Responses to Potassium Fertilizer Responses in General	5 8 12 13 16
III MATERIALS AND METHODS	23
Cultivar Soil Types and Location Sitiawan Series Soil Rasau Series Soil Durian Series Soil Malacca Series Soil Munchong Series Soil	23 24 24 27 28 29

	Page
Experimental Design Plot Size and Arrangement Plot Demarcation, Guard Rows	30 30
and Recording Trees Treatments Fertilizer Applications (Rates,	32 32
Timing and Placement)	35
Field Upkeep and General Maintenance History of Pests and Diseases	36 38
Rainfall Data	39
Growth and Yield Recording Girth Recording Yield Recording	39 39 40
Soil Sampling and Analyses Soil Sampling Soil Analyses	41 41 41
Leaf Sampling and Analyses Leaf Sampling Leaf Analyses	44 44 47
Statistical Analysis	48
IV RESULTS AND DISCUSSION	50
Soil Properties Sitiawan Series Soil Rasau Series Soil Durian Series Soil Malacca Series Soil Munchong Series Soil Overall Discussion on Changes in Soil Properties	51 55 57 58 59 60
Growth Performance Growth on Sitiawan Series soil Growth on Rasau Series soil Growth on Durian Series soil Growth on Malacca Series soil Growth on Munchong Series soil	62 63 64 64 64

	Page
Girth Increments (Growth Rates)	68
Girth Increments on Sitiawan Series Soil	68
Girth Increments on Malacca Series Soil	68
Girth Increments on Munchong Series Soil	69
Girth Increments on Rasau & Durian Series Soil Growth Rate and Fertilizer	71
Treatments	72
Yield Responses Yields on Sitiawan Series Soil Yields on Rasau Series Soil Yields on Durian Series Soil Yields on Malacca Series Soil Yields on Munchong Series Soil	73 74 78 79 83 87
Fertilizer Poaching and Effect on Yield Responses	89
N-K Interaction Effect	90
Leaf Analyses Leaf Nitrogen Contents Leaf Potassium Contents Leaf Phosphorus Contents Leaf Calcium Contents Leaf Magnesium Contents Factors Influencing Leaf Nutrient Contents	91 91 94 96 98 100
Rainfall Mean Yearly Rainfall Effects of Rainfall on Yields Effects of Rainfall on Growth, Soil and Leaf Analyses	104 104 106
Nutrient Cycle of a Rubber Plantation Addition of Nutrients to the Cycle Loss or Leakage of Nutrients from the Cycle	110 110
SUMMARY AND CONCLUSION	115

V

		Page
VI	BIBLIOGRAPHY	119
	APPENDICES	
Α.	Soil Profile Description	130
В.	Analyses of Soils at Commencement and at End of Trials	137
C,	Fertilizer Application Rates 1977 - 1987	143
D.	Growth Measurements - Girth of Stem of RRIM 600	145
E.	Cumulative Girth Increments of RRIM 600	151
F.	Tapping Programme for RRIM 600	157
G.	Mean Test Tapping Yields	159
н.	RRIM 600 Crop Production (Extrapolated)	165
I.	Leaf Nitrogen Contents of RRIM 600	171
J.	Leaf Potassium Contents of RRIM 600	177
К.	Leaf Phosphorus Contents of RRIM 600	183
L.	Leaf Calcium Contents of RRIM 600	189
M.	Leaf Magnesium Contents of RRIM 600	195
N.	Rainfall Data	201
	CURRICULUM VITAE	207

LIST OF TABLES

Table		Page
1	Critical Leaf Nutrient Contents for Hevea	11
2	Total Nitrogen Needs of Rubber	14
3	Effect of N and K on Growth and Yield of Rubber on Rengam Series Soil During Six Years of Treatment and Recording	18
4	Nutrient Drained on Stimulation and s/2 d/2 Tapping	20
5	Particulars of Fertilizer Trials	26
6	Treatment Rates of Nitrogen and Potassium	34
7	Application Rates of Phosphorus and Magnesium	35
8	Soil Productivity Classification and Expected Rubber Yields	52
9	Nutrient Levels of Soils in Peninsular Malaysia	53
10	Soil Rating According to Productivity and Nutrient Contents	54
11	Range of Soil Properties at Commence- ment and End of the Trials	56
12	RRIM 600 Yields in Commercial Plantings	74
13	Leaf N Contents according to Grouped Treatments on Sitiawan Series Soil	93
14	Ten-Year Mean Leaf N Levels (%)	93
15	Leaf K Contents According to Grouped Treatments on Sitiawan Series Soil	94
16	Ten-Year Mean Leaf K Levels (%)	95

Table		Page
17	Leaf P Contents According to Grouped Treatments on Sitiawan Series Soil	97
18	Ten-Year Leaf P Levels (%)	98
19	Leaf Ca Contents According to Grouped Treatments on Sitiawan Series Soil	99
20	Ten-Year Leaf Ca Levels (%)	100
21	Leaf Mg Contents According to Grouped Treatments on Sitiawan Series Soil	101
22	Ten-Year Leaf Mg Levels (%)	101
23	Ten-Year Mean Annual Rainfall and Yield	105
24	Years with at least 3 Consecutively Dry Months	109
25	Amounts of Nutrients Added to the Nutrient Cycle	112
26	Amounts of Nutrients Leaked or "Lost" from the Nutrient Cycle	113
	Tables in Appendices A to N	
Al	Sitiawan Series Soil Profile Description	122
A2	Rasau Series Soil Profile Description	133
A 3	Durian Series Soil Profile Description	134
A4	Malacca Series Soil Profile Description	135
A5	Munchong Series Soil Profile	126

Table		Page
В1	Analyses of Sitiawan Series Soil at 0-15 cm depth, Sg. Wangi Estate	138
B2	Analyses of Rasau Series Soil at 0-15 cm depth, Victoria Estate	139
В3	Analyses of Durian Series Soil at 0-15 cm depth, Sg. Senarut Estate	140
B4	Analyses of Malacca Series Soil at 0-15 cm depth, Linsum Estate	141
В5	Analyses of Munchong Series Soil at 0-15 cm depth, Sg. Klah Estate	142
С	Fertilizer Application rates 1977-1987	144
D1	Growth of RRIM 600 on Sitiawan Series Soil, Sg. Wangi Estate	146
D2	Growth of RRIM 600 on Rasau Series Soil, Victoria Estate	147
D3	Growth of RRIM 600 on Durian Series Soil, Sg. Senarut Estate	148
D4	Growth of RRIM 600 on Malacca Series Soil, Linsum Estate	149
D5	Growth of RRIM 600 on Munchong Series Soil, Sg. Klah Estate	150
El	Cumulative girth increments on Sitiawan Series Soil	152
E2	Cumulative girth increments on Rasau Series Soil	153
E3	Cumulative girth increments on	154

Table		Page
E4	Cumulative Girth Increments on Malacca Series Soil	155
E5	Cumulative Girth Increments on Munchong Series Soil	156
F	Tapping Programme for RRIM 600	158
Gl	Mean Test-tapping Yields on Sitiawan Series Soil	160
G2	Mean Test-tapping Yields on Rasau Series Soil	161
G3	Mean Test-tapping Yields on Durian Series Soil	162
G4	Mean Test-tapping Yields on Malacca Series Soil	163
G5	Mean Test-tapping Yields on Munchong Series Soil	164
н1	Rubber Yields on Sitiawan Series Soil, Sg. Wangi Estate	166
112	Rubber Yields on Rasau Series Soil, Victoria Estate	167
Н3	Rubber Yields on Durian Series Soil, Sg. Senarut Estate	168
H4	Rubber Yields on Malacca Series Soil, Linsum Estate	169
Н5	Rubber Yields on Munchong Series Soil, Sg. Klah Estate	170
11	Leaf Nitrogen Content of RRIM 600 on Sitiawan Series Soil, Sg. Wangi Estate	172

Page	le	Tab]
173	Leaf Nitrogen Content of RRIM 600 on Rasau Series Soil, Victoria Estate	12
174	Leaf Nitrogen Content on RRIM 600 On Durian Series Soil, Sg. Senarut Estate	13
175	Leaf Nitrogen Content of RRIM 600 on Malacca Series Soil, Linsum Estate	14
176	Leaf Nitrogen Content of RRIM 600 on Munchong Series Soil, Sg. Klah Estate	15
178	Leaf Potassium Content of RRIM 600 on Sitiawan Series Soil, Sg. Wangi Estate	J1
179	Leaf Potassium Content of RRIM 600 on Rasau Series Soil, Victoria Estate	J2
180	Leaf Potassium Content of RRIM 600 on Durian Series Soil, Sg. Senarut Estate	J3
181	Leaf Potassium Content of RRIM 600 on Malacca Series Soil, Linsum Estate	J4
182	Leaf Potassium Content of RRIM 600 on Munchong Series Soil, Sg. Klah Estate	J5
184	Leaf Phosphorus Content of RRIM 600 on Sitiawan Series Soil, Sg. Wangi Estate (Percentage on Dry Matter)	Kl
185	Leaf Phosphorus Content of RRIM 600 on Rasau Series Soil, Victoria	K2

Table		Page
К3	Leaf Phosphorus Content of RRIM 600 on Durian Series Soil, Sg. Senarut Estate (Percentage on Dry Matter)	186
К4	Leaf Phosphorus Content of RRIM 600 on Malacca Series Soil, Linsum Estate (Percentage on Dry Matter)	187
К5	Leaf Phosphorus Content of RRIM 600 on Munchong Series Soil, Sg. Klah Estate (Percentage on Dry Matter)	188
L1	Leaf Calcium Content of RRIM 600 on Sitiawan Series Soil, Sg. Wangi Estate (Percentage on Dry Matter)	190
L2	Leaf calcium Content of RRIM 600 on Rasau Series Soil, Victoria Estate (Percentage on Dry Matter)	191
L3	Leaf Calcium Content of RRIM 600 on Durian Series Soil, Sg. Senarut Estate (Percentage on Dry Matter)	192
L4	Leaf Calcium Content of RRIM 600 on Malacca Series Soil, Linsum Estate (Percentage on Dry Matter)	193
L5	Leaf Calcium Content of RRIM 600 on Munchong Series Soil, Sg. Klah Estate (Percentage on Dry Matter)	194
M1	Leaf Magnesium Content of RRIM 600 on Sitiawan Series Soil, Sg. Wangi Estate (Percentage on Dry Matter)	196
M2	Leaf Magnesium Content of RRIM 600 on Rasau Series Soil, Victoria Estate (Percentage on Dry Matter)	197
М3	Leaf Magnesium Content of RRIM 600 on Durian Series Soil, Sg. Senarut Estate (Percentage on Dry Matter)	198

Table		Page
M4	Leaf Magnesium Content of RRIM 600 on Malacca Series Soil, Linsum Estate (Percentage on Dry Matter)	199
М5	Leaf Magnesium Content of RRIM 600 on Munchong Series Soil, Sg. Klah Estate (Percentage on Dry Matter)	200
N1	Sg. Wangi Estate Monthly Rainfall Data (No. of Days Rained and Amount in mm)	202
N2	Victoria Estate Monthly Rainfall Data (No. of Days Rained and Amount in mm)	202
N3	Sg. Senarut Estate Monthly Rainfall Data (No. of Days Rained and Amount in mm)	204
N4	Linsum Estate Monthly Rainfall Data (No. of Days Rained and Amount in mm)	205
N5	Sg. Klah Estate Monthly Rainfall Data (No. of Days Rained and	206

LIST OF FIGURES

Page		Figure
25	Map of Peninsular Malaysia Showing the Location of the Five Fertilizer Trials	1
31	Position of Guard Rows and Recording Trees of Two Adjacent Plots	2
4.5	Sampling of Shade Leaves in the Mid- canopy of a Mature Rubber Tree	3
46	Selection of Leaflets for a Bulked Leaf Sample	4
65	Growth of RRIM 600 on Sitiawan Series Soil (1977 - 1987)	5
66	Growth of RRIM 600 in 1987 on Various Soils	6
70	Cumulative girth Increments in 1987 on Various Soils	7
76	Yield of RRIM 600 on Sitiawan Series Soil	8
80	Yield of RRIM 600 on Rasau Series Soil	9
82	Yield of RRIM 600 on Durian Series Soil	10
84	Yield of RRIM 600 on Malacca Series Soil	11
88	Yield of RRIM 600 on Munchong Series Soil	12
3.03	Painfall on Various Trial Locations	13

LIST OF PLATES

Plate		Page
1	Depth of Tap Root of 15-year-old RRIM 600 Tree	85
2	Extent of Lateral Roots in a 15- vear-old RRIM 600 Tree	86

LIST OF ABBREVIATIONS

ANOVA Analysis of Variance

Approx Approximate

CEC Cation Exchange Capacity

CIRP Christmas Island Rock Phosphate

C mol Centi molar

DRC Dry Rubber Content

FELDA Federal Land Development Authority

GML Ground Magnesium Limestone (Dolomite)

HMPB Harrisons Malaysian Plantation Berhad

LCC Leguminous Cover Crops

LSD Least Significant Difference

MOP Muriate of Potash (KCl)

Me % Milliequivalent percent

OPRS Oil Palm Research Station, Banting,

Selangor

RISDA Rubber Industry Smallholders Development

Authority

RRIM Rubber Research Institute of Malaysia (formerly Rubber Research Institute of

Malaya)

Statistical Analysis Systems SAS

Sungai Sg

SIRIM Standards and Industrial Research

Institute of Malaysia

Yr Year

ABSTRACT

Abstract of thesis submitted to the Senate of Universiti Pertanian Malaysia in partial fulfilment of the requirements for the degree of Master of Agricultural Science

THE EFFECT OF NITROGEN
AND POTASSIUM FERTILIZERS AND SOIL TYPES
ON RUBBER (HEVEA BRASILIENSIS MUELL. ARG.)

By

CHANG AH KOW

November, 1989.

Supervisor: Associate Professor Dr. Sharifuddin bin

Haji Abdul Hamid

Faculty : Agriculture

Five fertilizer trials were conducted from 1977 to 1987 to evaluate the effects of different rates of nitrogen (N) and potassium (K) fertilizers on rubber grown on five types of soils in Peninsular Malaysia. The treatments consisted of one control (unfertilized) and nine factorial combinations of nitrogen and potassium fertilizers at three levels each. The levels

of fertilizers used were 26.4 kg, 53.3 kg and 79.7 kg N ha⁻¹ yr⁻¹ in combination with 26.0 kg, 60.3 kg and 97.1 kg K ha⁻¹ yr⁻¹. The rubber clone used in these trials was RRIM 600. The five types of soils used were Sitiawan series (Aquoxic Tropudult), Rasau series (Oxic Dystropept), Durian series (Orthoxic Tropudult), Malacca series (Tropeptic Haplorthox) and Munchong series (Tropeptic Haplorthox).

Data on growth, yield and leaf nutrient levels were recorded throughout the course of the trials. Soil analyses were undertaken at the beginning and at the end of the trials.

Soil analyses indicated that there was an increase in the organic carbon, total nitrogen and phosphorus contents in the soil. The higher organic carbon reflects the build-up of organic matter from the residue of the leguminous cover crops and leaf litter. The higher total N and P could be the result of the accumulation of N and P from the organic matter decomposition and perhaps from the fertilizer application.

Generally, there were slight decreases in exchangeable bases in some soils, indicating the

utilisation of these nutrients by the plants in excess of the fertilizer given. However, this observation was inconsistent in two of the trials.

Positive growth and yield responses to N and K fertilizers were detected only after six years of fertilization. Better responses were obtained from the combinations involving the second and third levels of N and K fertilization. The best growth and yield were obtained from N and K fertilization at the rate of 53.3 kg N and 60.3 kg K per hectare per year.

The lack of responses in the first few years of the trials can be attributable to two main factors, i.e. the substantial recycling of nutrients by the vigorous leguminous cover crops established during the immature phase and the fertilizer poaching by the extensive and intermingling root systems of the rubber trees. Based on the physical tracing of roots <u>in situ</u>, the longest root could exceed 7 m and studies by other researchers show that lateral roots could reach a horizontal distance of 11 m from the tree trunk.

Leaf nutrient contents were related to the inherent soil properties and were influenced to a slight extent by the respective fertilizer nutrients applied.

Rainfall could have some effect on growth and leaf nutrient content but the relationship could not be quantified. It appeared that both too little and too much rain were not conducive for high latex yields. The most favourable range of rainfall was from 1900 to 2100 mm per annum.

Overall, the results showed that high rates of fertilizers are necessary to sustain good growth and yield of rubber. These rates are higher than those applied under current practice.

A supplementary finding from the trials is that, in designing fertilizer trials involving small plots, adequate guard rows or trenching may be necessary in order to reduce fertilizer poaching by roots and to make the trials more sensitive to the fertilizer treatments.

ABSTRAK

Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia sebagai memenuhi sebahagian daripada syarat-syarat untuk Ijazah Master Sains Pertanian

KESAN PEMBAJAAN NITROGEN DAN KALIUM DAN JENIS JENIS TANAH KE ATAS TANAMAN GETAH (HEVEA BRASILIENSIS MUELL. ARG.)

Oleh

CHANG AH KOW

November, 1989

Penyelia: Profesor Madya Dr. Sharifuddin bin Haji

Abdul Hamid

Fakulti: Pertanian

Lima kajian pembajaan telah dijalankan bagi menilai kesan kadar pembajaan nitrogen (N) dan kalium (K) ke atas getah yang ditanam di atas lima jenis tanah di Semenanjung Malaysia. Rawatan terdiri dari satu kawalan (tiada pembajaan) dan sembilan kombinasi faktorial baja N dan K pada tiga kadar tiap-tiap satu. Kadar N yang digunakan adalah 26.4 kg, 53.3 kg dan 79.7 kg N ha⁻¹ thn⁻¹ dan kadar K pula adalah 26.0 kg, 60.3 kg dan 97.1

