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CHAPTER I 

INTRODUCTION 

Wear is the major cause of material wastage and loss of mechanical 

performance of machine elements, and any reduction in wear can result in 

considerable savings. The savings can be made by improved friction control. 

Lubrication is an effective means of controlling wear and reducing friction, and it 

has wide applications in the operation of machine elements such as bearings. 

Lubrication problems appear often in engineering design, and it is the mechanism 

that separates two surfaces moving relative to each other by a fluid film which can 

be sheared with low resistance without causing any damage to the surfaces 

(Czichos, 1978). 

The lubricant film carnes part of the total load on the bearing. The 

mechanism which does this is varied. In some cases, the mating parts are specially 

designed to ensure it, as in journal bearings. The full load may not be carried by 

the oil film, but it relieves the material by carrying most of it. Pressure in the 

lubricant film is generated by 'wedge action', the relative movement of the 

surfaces dragging the lubricant into a decreasing space (Summers-Smith, 1994). 

When the surfaces in relative motion are so oriented that the motion causes the 

fluid pressure to support the load without metal-to-metal contact, the lubrication 

phenomenon is known as hydrodynamic lubrication . A common engineering 



2 

component which exploits this principle is the cylindrical bore journal bearing in 

which a loaded shaft (or journal) rotates in a metallic bush that is fed continuously 

by a lubricating fluid. Under ideal operating conditions the longitudinal axes of 

both shaft and bush are parallel, although displaced eccentrically. This gives rise to 

a thin converging fluid film which generates a pressure field and forms the load 

carry ing portion of the bearing . 

In hydrodynamic lubrication, several simplifying assumptions are made 

before a mathematical description of the fundamental underlying mechanisms can 

be derived. The principles of hydrodynamic lubrication were first established by a 

well known scientist Osborne Reynolds in 1886 (Welsh, 1983) .  Reynolds explains 

the mechanism of hydrodynamic lubrication through the generation of a viscous 

liquid film between the moving surfaces. Reynolds equation is derived from the full 

Navier-Stokes equation. More oft en it is derived by simply applying a typical 

engineering approach and considering the equilibrium of an element of liquid 

subjected to viscous shear and applying the continuity of flow principle. It is 

assumed that the lubricant is incompressible and that the viscosity is constant 

throughout the film. This approach is known as isoviscous model where the 

thermal effects in hydrodynamic film are neglected. From a practical point of view, 

Reynolds most important conclusions were that the formation of an oil wedge was 

essential, a thin oil film could carry a greater load than a thick film, the load 

carrying capacity of an oil film increased directly in proportion to its dynamic 

viscosity, and under most normal conditions, it also increased directly in proportion 

to the relative velocity between the two opposing surfaces (Welsh, 1983). The 
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entire process of hydrodynamic pressure generation can be described 

mathematically to enable accurate prediction of bearing characteristics. The journal 

bearing design parameters such as load carrying ability, flow requirement and 

power loss are determined from Reynolds equation both analytically and 

numerically. 

For many years, attempts were made to solve the differential equations 

which arose from the theories of Reynolds using specialized mathematical 

functions. But this analytical solution process was very tedious and the range of 

solutions was very limited. Discrepancy always existed between what was required 

in the engineering solutions to hydrodynamic problems and the solutions available. 

For quick engineering analysis, nowadays the application of analytical method 

determines two types of journal bearing solutions (i) Long bearing solution (side 

leakage neglected) and (ii) Narrow bearing solution (Hamrock, 1994). 

Numerical analysis has allowed models of hydrodynamic lubrication to 

describe the characteristics of real bearings. To analyse the bearing design 

parameters, various approximate numerical methods have evolved over the years 

such as the finite difference method (FDM). finite element method (FEM) etc. It is 

very difficult to use the finite difference method when irregular geometries are 

encountered because it only approximates the region of interest with a grid of 

uniformly spaced nodes (Nicholas,1977). Conversely, one of the latest and most 

popular numerical technique, the finite element method is attractive in the 

situations when curved or abnormally shaped boundaries are encountered. In the 
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finite element method the solution regIOn is divided into elements giving a 

piecewise approximation to the governing equations. Since these elements can be 

assembled in a variety of ways, they can be used to represent complex geometries 

or irregular boundaries. Use of elements and interpolation functions ensure 

continuity of pressure and mass flow rate across inter-element boundaries 

(Nicholas, 1977}. The finite element method now has a wide range of applications 

particularly in engineering. It was first used in the structural engineering. More 

recently however, it has been developed for solution of viscous flow and plasticity 

problems. 

Objective of Study 

Currently, there is very little information about the comparison between the 

analytical method and the finite element method of a journal bearing behaviour. 

Thus to understand this issue more clearly, a research study has been carried out 

to compare analytical method and finite element method in the design parameters 

of a journal bearing. The analytical method and finite element method solution 

procedures, the results of these analyses, and their comparisons with published 

results form the major part of this thesis. 

Structure of the Thesis 

In this thesis a review of pertinent literature is presented iQ. chapter ll. 

Chapter III discusses all the related theories that account for the design parameters 
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in hydrodynamic lubrication for a cylindrical bore journal bearing. Chapter IV 

outlines the numerical computation procedure. In this chapter, the related theories 

for the finite element method are described for solving the design parameters of a 

journal bearing. Chapter V describes the most pertinent theories for the analytical 

method for solving the design parameters of a journal bearing. 

The results of this research work i.e. the effects of operating variables such 

as eccentricity ratio and shaft speed on the various design parameters are outlined 

in chapter VI. The FEM results are compared with analytical results. These results 

are also compared with the published results to verify the present study. Chapter 

VII concludes the work described in preceding chapters. It also includes 

recommendations for further work. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

Although the study of friction and wear attracted the attention of many 

scientists during the past few centuries, the scientific investigation into friction and 

wear is a relatively recent phenomenon. Much of the tribological research is 

commercially oriented and a wide range of wear resistant or friction resisting 

materials have already been developed. Lubrication is an effective means of 

controll ing wear and reducing friction in bearings. This chapter presents a review 

of the most pertinent background work, experimental and theoretical studies in the 

fluid film lubrication. To establish a comprehensive background literature, the 

review firstly focuses on some of the general research carried out in the field of 

friction, wear and lubrication. Subsequent sections review the experimental and 

theoretical work carried out in hydrodynamic bearings, particularly the cylindrical 

bore journal bearing. The review covers aspects associated with Newtonian fluids 

and isothennal effects. 

6 
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Background 

Lubrication is the mechanism that reduces friction between two surfaces in 

relative motion. Power loss, excessive temperature rise and consequent wear are 

the problems associated with friction. The study of the nature of friction was 

undertaken by Leonardo da Vinci in the late 15th century (Stachowiac and 

Batchelor, 1993). He concluded that the static and low speed frictional resistance of 

two surfaces was proportional to their weights and independent of the area of 

contact, and that smoothing or lubricating the surfaces reduced the frictional drag 

(Ezzat, 1971). However, the understanding of friction and wear languished for 

several centuries with only fancy concepts. For example, it was proposed by 

Amonton in 1699 that when surfaces were covered by small spheres, and the 

friction coefficient was a result of the angle of contact between spheres of 

contacting surfaces then a value of friction coefficient close to 0.3 was found 

(Stachowiac and Batchelor, 1993). 

At the end of the eighteenth century, Coulomb observed that kinetic 

friction was less than static friction and that frictional resistance is proportional to 

the load and unaffected by area or speed (Ezzat, 1971). Although these early 

studies were on plane surfaces, the longest history of scientific study of contact 

surfaces is concerned with the journal bearing (Ezzat, 1971). In 1848, Von Pauli 

investigated the effect of bearing metals on the frictional behaviour of oil lubricated 

journal bearings. He was able to achieve a coefficient of friction of 0.0033.  The 

frictional resistance increased tenfold when he applied the same load to a smaller 
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bearing increasing the specific load by 36% (Cameron, 1966) Him was the first 

to report the importance of the lubricant viscosity in friction in 1854 (Ezzat, 1971) 

He reported that the frictional resistance in a journal bearing was proportional to 

the load, speed and lubricant viscosity. Later, his work, which lacked theoretical 

backing, was used by Petroff as a foundation for the hydrodynamic theory of 

friction (Cameron,1966). Goodman explained the theory of friction in lubricated 

surfaces by the interference of surface asperities (Cameron, 1966). During that 

time, Petroff worked on the analysis of the existing information and devoted 

himself in finding the frictional resistance of lubricated bearings. In 1883, Petroff 

gave the results of experimental work on viscous friction in a hydrodynamic 

bearing. He correlated friction with the lubricant viscosity. He concluded that 

between two coaxial cylinders i.e. for the 'ideal' case of no eccentricity between 

bearing and journal, there was no 'wedging action' and hence no ability of the oil 

film to support a load , and no lubricant flowed in the axial direction (Juvinall and 

Marshek, 1991). 

Experimental Studies 

The serious appreciation of hydrodynamic lubrication started towards the 

end of the 19th century. Among all the early investigations in lubrication, 

Beauchamp Tower's experiments represented a breakthrough that led to the 

development of lubrication theory. In 1883, Tower reported the results of a series 

of experiments which investigated the friction between solid bodies at high 

velocities (Cameron,1966). Tower observed that oil in a journal bearing always 
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leaked out of a hole beneath the load. He tried to block this flow by pounding cork 

and wooden stoppers into the hole, but the hydrodynamic pressure forced them 

out. Tower connected a pressure gauge to the oil hole, and subsequently made 

experimental measurements of the oil film pressures at various locations. He then 

discovered that the summation of local hydrodynamic pressure times differential 

projected bearing area was equal to the load supported by the bearing (Stachowiac 

and Batchelor,1993). The analysis of this work carried out by Stokes and later 

Reynolds led to a theoretical explanation of Tower's results and on this the theory 

of fluid film lubrication has been based. 

In 1886, with the publication of classical paper on hydrodynamic 

lubrication, Reynolds proved that hydrodynamic pressure of liquid entrained 

between sliding surfaces was sufficient to prevent contact between surfaces even at 

very low sliding speeds (Stachowiac and Batchelor,1993). His research findings 

had immediate practical application and led to the removal of an oil hole from the 

load line of railway axle bearings. The oil, instead of being drained away by the 

hole, was able to generate a hydrodynamic film and much lower friction resulted 

(Stachowiac and Batchelor, 1993). The work of Reynolds initiated many other 

research efforts aimed at improving the interaction between two contacting 

surfaces, and which continue up till today. As a result, journal bearings are now 

designed to high levels of sophistication (Stachowiac and Batchelor, 1993). 


