
 
 

 
 
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 

 
 
 
DEVELOPING HIGHLY  DIMENSIONALLY STABLE MULTI-LAYERED 

ORIENTED STRAND BOARD FROM ACACIA MANGIUM WILLD. 
IMPREGNATED WITH LOW MOLECULAR WEIGHT PHENOLIC 

RESIN 
 
 
 
 
 
 

ONG LAY LEE 
 

 
 
 
 
 

FH 2002 13 
 



DEVELOPING HIGHLY DIMENSIONALLY STABLE MULTI-LAYERED 
ORIENTED STRAND BOARD FROM ACACIA MANGIUM WILLD. 

IMPREGNATED WITH LOW MOLECULAR WEIGHT PHENOLIC RESIN 

By 

ONG LAY LEE 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 
in Fulfilment of the Requirement for the Degree of Master of Science 

August 2002 



DEDICATION 

'" In loving memory of my Grandfather 
Ong Soon Seng (1912 -1991) 

Always in my thought 

ii 



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Master of Science 

DEVELOPING HIGHLY DIMENSIONALLY STABLE MULTI-LAYERED 
ORIENTED STRAND BOARD FROM ACACIA MANGIUM WILLD. 

IMPREGNATED WITH LOW MOLECULAR WEIGHT PHENOLIC RESIN 

By 

ONG LAY LEE 

August 2002 

Chairman: Paridah Md. Tahir, Ph.D. 

Faculty: Forestry 

111 

This study was carried out to investigate the effectiveness of pre-treatment of 

wood strands with low molecular weight phenol formaldehyde (LPF) resin to improve the 

dimensional stability of oriented strand board (OSB). The origin and extent of thickness 

swelling (TS) in OSB made from A. mangium Willd. were also investigated. Three- and 

five-layered OSBs were fabricated with 5% resin solid based on oven dry weight of wood 

strands (w/w) of phenol formaldehyde (PF) resin as a binder. 

The origin of TS was determined by using coating method where the edges and 

surfaces of the panel were coated with oil-based pigmented paint. To assess the degree of 

TS, the OSB specimens were sliced/sectioned into four layers through the thickness 

direction of the panel and were subjected to 24 hours of cold water soaking. The results 

showed that the water uptake by the panel occurred mainly through the four edges. The 

board surfaces absorbed 20% more water than those in the core. The distribution of TS 

and water absorption (W A) for the sectioned layers were found to resemble that of the 
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vertical density profile of the OSB panel . The surface layers of the panel had relatively 

higher density, thus contribute significant influence over the TS of the board. The 

Pearson ratio showed a very high correlation between the board density and TS (R2 = 

0 .87 and 0.96 for three- and five-layered OSB, respectively). The untreated five-layered 

OSB (control) was found to be more stable than that of three-layered due to the presence 

of higher resin content in the surfaces (fine particles). 

Since more than 30% of the control specimens registered TS exceeded 1 2%, an 

attempt was made to enhance the dimensional stability of the OSB. The wood strands 

were impregnated with an LPF resin prior to spraying with a conventional PF resin (5% 

w/w). It was found that the mechanical properties and dimensional stability of the panels 

were significantly affected by both the amount of LPF resin incorporated, i.e. 2%, 5% 

and 7% (w/w), and board structure (three- and five-layered). All the panels treated with 

LPF resin produced significantly higher modulus of rupture (MOR) than the control 

panel; the three-layered OSB apparently had a higher MOR than did five-layered OSB. 

After a hot and cold water treatment, both three- and five-layered panels impregnated 

with 7% LPF retained 67% and 58% of their MOR respectively. The internal bond (IB) 

strength increased with an increasing level of LPF; where OSB treated with 7% LPF 

showed twice the value of the control. Boards impregnated with LPF showed a dramatic 

decrease (27%) in TS, in particular the three-layered boards, even at a low LPF loading 

of 2%. High dimensional stability at 6 1 % of anti-swelling efficiency (ASE) was attained 

by three-layered boards treated with 7% LPF. Increasing the amount of LPF resulted in 

significant reduction in the TS and the parallel and perpendicular linear expansion (LE/I 
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and LE_L respectively) when the specimens were exposed to 80% relative humidity (RH). 

The LE_L was found to be higher than LEI/ irrespective of LPF level. 

Even though the LPF treatment had successfully reduced the TS of the OSB, the 

IB obtained was not favourable due to insufficient curing of the resin .  To confirm this, 

the effect of press times (7.5, 10.5 and 1 1.5 minutes) on the IB strength of the five­

layered OSB was examined. The study shows that the IB of the OSB was significantly 

improved by applying longer press time. Pressing the boards for 1 1.5 minutes doubled 

the IB strength to 0.4 MPa. Even though the MOR was not significantly affected by the 

extended press time, the stiffness (modulus of elasticity, MOE) was markedly improved. 

The use of longer press time apparently resulted in better retention of both the MOR and 

MOE (after 2-hour boiling). The dimensional stability properties i .e. TS, W A and LE of 

the phenolic-pretreated OSB were also enhanced when longer press time was used. 
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Pengajian ini adalah untuk menyelidik keberkesanan pra-rawatan fenol 

formaldehid yang berjisim molikul rendah (LPF) keatas tatal kayu demi peningkatan 

kestabilan dimensi panel tersebut. Punca pengembangan ketebalan (TS) papan tatal 

berorientasi (OSB) yang diperbuat daripada A. mangium Willd. juga diselidiki. Papan 

tatal berorientasi tiga- dan lima-lapis dilekat dengan menggunakan 5% pepejal perekat 

berdasarkan herat kering ketuhar tatal kayu (w/w) fenol formaldehid (PF) yang 

digunakan sebagai perekat. 

Punca TS diperolehi dengan menggunakan kaedah penyalutan dimana tepi dan 

permukaan panel disalut dengan cat minyak. Untuk mengetahui tahap TS, spesimen OSB 

dipotong kepada empat lapis dari arah ketebalan dan direndam dalam air sejuk selama 24 

jam. Keputusan menunjukkan keupayaan papan untuk menyerap air (W A) didapati lebih 

tinggi melalui tepinya. Permukaan papan didapati menyerap 20% lebih air berbanding 
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dengan lapisan tengah. Corak TS dan W A bagi setiap potongan lapis tersebut didapati 

selari dengan perubahan corak kepadatan secara menegak pada OSB. Lapisan permukaan 

papan mempunyai kepadatan yang lebih tinggi , maka mempengaruhi TS papan secara 

ketara. Nisbah 'Pearson' menunjukkan kewujudan perhubungan rapat di antara kepadatan 

papan dan TS (R2 = 0.87 dan 0.96 untuk OSB tiga- dan lima lapis masing -masing). OSB 

lima-lapis tanpa rawatan (kawalan) didapati lebih stabil daropada tiga-Iapis disebabkan 

kandungan perekat yang lebih tinggi pada permukaannya (serpihan halus). 

Memandangkan terdapat lebih dari 30% daripada spesimen kawalan merakamkan 

TS melebihi 1 2%, usaha telah dilakukan untuk meningkatkan sifat kekuatan dimensi 

OSB. LPF telah diserapkan ke dalam tatal kayu sebelum disemburkan dengan perekat PF 

konvensional (5% w/w). Adalah didapati bahawa sifat kekuatan mekanikal dan kestabilan 

dimensi bagi panel yang telah dirawat amat dipengaruhi oleh jumlah perekat yang 

diserapkan, iaitu 2%, 5% dan 7% (w/w), dan struktur papan (tiga- dan lima-lapis). 

Semua panel yang dirawat dengan perekat LPF mencapai modulus kehancuran (MOR) 

yang lebih tinggi berbanding dengan tatal kawalan secara ketara. Panel tiga-Iapis 

mempunyai MOR yang lebih tinggi daripada panel lima-lapis. Selepas rawatan air panas 

and sejuk, kedua-dua panel tiga- dan lima-lapis yang dirawat dengan 7% LPF masing­

masing dapat mengekalkan 67% and 58% daripada kekuatan asal mereka. Kekuatan 

lekatan dalarnan (m) rneningkat dengan peningkatan kadar LPF dirnana papan dirawat 

dengan 7% LPF menunjukkan peningkatan kekuatan tersebut secara berganda. Panel 

yang dirawat dengan LPF juga mempamerkan pengurangan TS (27%) secara mendadak, 

terutamanya panel tiga-Iapis walaupun pada rawatan LPF yang rendah (2%). Kestabilan 
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dimensi yang tinggi pada 6 1  % keupayaan menentang pengembangan (ASE) telah dicapai 

oleh panel tiga-Iapis yang dirawat dengan 7% LPF. Meninggikan amaun LPF telah 

menurunkan TS, pengembangan linear selari dan melintang (LE" and LE -'_ masing­

masing) secara ketara apabila didedahkan kepada 80% kelembapan bandingan (RH). 

LE_,- adalah lebih tinggi daripada LE" pada semua level LPF. 

Walaupun rawatan LPF telah berjaya mengurangkan TS pada OSB, IB yang 

diperolehi adalah tidak baik disebabkan perekat tidak matang dengan secukupnya. Untuk 

memastikan kenyataan ini adalah benar, kesan masa penekanan (7.5, 1 0.5 dan 1 1 .5 minit) 

keatas kekuatan IB turut dikaji untuk OSB lima-lapis. Keputusan menunjukkan IB pada 

OSB telah dimajukan secara ketara dengan menggenakan masa penekanan yang lebih 

panjang. Kekuatan IB telah dipertingkatkan sehingga hampir dua kali ganda untuk masa 

penekanan 1 1 .5 minit kepada 0.4 MPa. Walaupun MOR tidak dipengaruhi oleh masa 

penekanan, modulus kekenyalan (MOE) telah dimajukan secara ketara. Penggunaan masa 

penekanan yang lebih panjang telah menyumbangkan kepada pengekalan kekuatan asal 

OSB (MOR dan MOE) yang lebih tinggi setelah direndam dalam air mendidih selama 

dua jam. Kestabilan dimensi iaitu, TS, W A dan LE pada OSB yang menjalani pra­

rawatan fenolik juga dipertingkatkan dengan menggunakan masa penekanan yang lebih 

panjang. 
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CHAPTERl 

INTRODUCTION 

Oriented Strand Board (OSB) is no longer a stranger to the world wood based 

panel market. It is one of the most significant developments in panel technology in this 

century. Producing OSB with greater bending strength in one-panel direction (usually the 

length direction) results in a product much l ike traditional plywood. Such panels are used 

almost entirely in structural applications in the same way as plywood. The OSB segment 

of the wood based composite industry has become an important part of the structural 

panel business in recent years. Its growth has been the greatest in the United States (U.S.) 

and Canada. OSB continues to gain wider acceptance in both the United States and 

Japanese housing markets and is seen as the most potential investment in the Southeast 

Asia region. The growth in OSB capacity is leading the response to the timber crisis and 

will help to defend wood products from competitive non-wood products for years to 

come. Improvements in OSB properties could make it more competitive for structural 

uses. 

Wood, like all other plant materials, is laid down from aqueous solution. The 

cellulose, hemicellulose, and lignin polymers formed are no longer soluble in water, but 

water still dissolves in them to form solid solutions on the polar hydroxyl groups. Water 

is held within the cell wall structure by hydrogen bonding (Stamm 1 964; Skaar 1 972). 

Wood composite panel products are known to be hygrothermal-viscoelastic materials. 

Therefore, moisture, temperature, load and time factors should be considered collectively 
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and dependently when assessing the serviceability or durability of these products upon 

exposure to changing environment. Furthermore, the load-carrying capacity of wood­

composite panels will be changed substantially when they are subjected to changing 

relative humidity. 

All wood products are hygroscopic, and shrink and swell when subjected to 

environmental conditions that cause desorption and absorption of water. Wood is 

dimensionally stable when the moisture content is above the saturation point and changes 

dimension as moisture is gained or lost below that point. Considerable concern is being 

expressed by the panel industry over excessive thickness swelling, particularly in OSB 

since it is usually used in building construction. The magnitude of the dimensional 

change of OSB is much greater in the thickness direction than would be expected from 

the normal shrinking and swelling of solid wood. The additional thickness swelling that 

occurs when OSBs are exposed to moisture - greater than that normally expected for 

wood material - is due to the release of residual compressive stresses imparted to the 

board during the pressing of the mat in the hot press. It is known that compressive failure 

of at least a portion of the wood particles is required to produce particleboard. The 

moisture content reduction while the mat is restrained in the hot press reduces the 

plasticity of the wood and results in a "set" of these compressive stresses. At some future 

date when the moisture content increases, the additional moisture will plasticize the wood 

and permit these stresses to be relieved, allowing expansion in the thickness direction (so­

called springback). Subsequent redrying will result in thickness shrinkage equal only to 

the shrinkage of the particles; none of the compressive stress released will be recovered 




